

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	1.0 Documentation

SleekXMPP

Get the Code

pip install sleekxmpp

The latest source code for SleekXMPP may be found on Github [http://github.com/fritzy/SleekXMPP]. Releases can be found in the
master branch, while the latest development version is in the
develop branch.

	Latest Stable Release

	
	1.0 [http://github.com/fritzy/SleekXMPP/zipball/1.0]

	Develop Releases

	
	Latest Develop Version [http://github.com/fritzy/SleekXMPP/zipball/develop]

A mailing list and XMPP chat room are available for discussing and getting
help with SleekXMPP.

	Mailing List

	SleekXMPP Discussion on Google Groups [http://groups.google.com/group/sleekxmpp-discussion]

	Chat

	sleek@conference.jabber.org

SleekXMPP is an MIT licensed XMPP library for Python 2.6/3.1+,
and is featured in examples in
XMPP: The Definitive Guide [http://oreilly.com/catalog/9780596521271]
by Kevin Smith, Remko Tronçon, and Peter Saint-Andre. If you’ve arrived
here from reading the Definitive Guide, please see the notes on updating
the examples to the latest version of SleekXMPP.

SleekXMPP’s design goals and philosphy are:

	Low number of dependencies

	Installing and using SleekXMPP should be as simple as possible, without
having to deal with long dependency chains.

As part of reducing the number of dependencies, some third party
modules are included with SleekXMPP in the thirdparty directory.
Imports from this module first try to import an existing installed
version before loading the packaged version, when possible.

	Every XEP as a plugin

	Following Python’s “batteries included” approach, the goal is to
provide support for all currently active XEPs (final and draft). Since
adding XEP support is done through easy to create plugins, the hope is
to also provide a solid base for implementing and creating experimental
XEPs.

	Rewarding to work with

	As much as possible, SleekXMPP should allow things to “just work” using
sensible defaults and appropriate abstractions. XML can be ugly to work
with, but it doesn’t have to be that way.

Here’s your first SleekXMPP Bot:

import logging

from sleekxmpp import ClientXMPP
from sleekxmpp.exceptions import IqError, IqTimeout

class EchoBot(ClientXMPP):

 def __init__(self, jid, password):
 ClientXMPP.__init__(self, jid, password)

 self.add_event_handler("session_start", self.session_start)
 self.add_event_handler("message", self.message)

 # If you wanted more functionality, here's how to register plugins:
 # self.register_plugin('xep_0030') # Service Discovery
 # self.register_plugin('xep_0199') # XMPP Ping

 # Here's how to access plugins once you've registered them:
 # self['xep_0030'].add_feature('echo_demo')

 # If you are working with an OpenFire server, you will
 # need to use a different SSL version:
 # import ssl
 # self.ssl_version = ssl.PROTOCOL_SSLv3

 def session_start(self, event):
 self.send_presence()
 self.get_roster()

 # Most get_*/set_* methods from plugins use Iq stanzas, which
 # can generate IqError and IqTimeout exceptions
 #
 # try:
 # self.get_roster()
 # except IqError as err:
 # logging.error('There was an error getting the roster')
 # logging.error(err.iq['error']['condition'])
 # self.disconnect()
 # except IqTimeout:
 # logging.error('Server is taking too long to respond')
 # self.disconnect()

 def message(self, msg):
 if msg['type'] in ('chat', 'normal'):
 msg.reply("Thanks for sending\n%(body)s" % msg).send()

if __name__ == '__main__':
 # Ideally use optparse or argparse to get JID,
 # password, and log level.

 logging.basicConfig(level=logging.DEBUG,
 format='%(levelname)-8s %(message)s')

 xmpp = EchoBot('somejid@example.com', 'use_getpass')
 xmpp.connect()
 xmpp.process(block=True)

Getting Started (with Examples)

	SleekXMPP Quickstart - Echo Bot

	Sign in, Send a Message, and Disconnect

	Create and Run a Server Component

	Manage Presence Subscriptions

	Mulit-User Chat (MUC) Bot

	Enable HTTP Proxy Support

	Send a Message Every 5 Minutes

	Send/Receive IQ Stanzas

Tutorials, FAQs, and How To Guides

	Supported XEPS

	Following XMPP: The Definitive Guide

	How to Work with Stanza Objects

	Creating a SleekXMPP Plugin

	How to Use Stream Features

	How SASL Authentication Works

	Using Stream Handlers and Matchers

Plugin Guides

	XEP-0030: Working with Service Discovery

SleekXMPP Architecture and Design

	SleekXMPP Architecture
	The Foundation: XMLStream
	The Main Threads

	How XML Text is Turned into Action

	Raising XMPP Awareness: BaseXMPP

	ClientXMPP

	ComponentXMPP

	Plugin Architecture

API Reference

	Event Index

	ClientXMPP

	ComponentXMPP

	BaseXMPP

	Exceptions

	Jabber IDs (JID)

	Stanza Objects
	Overview

	Registering Stanza Plugins

	ElementBase

	StanzaBase

	Stanza Handlers
	The Basic Handler

	Callback

	Waiter

	Stanza Matchers
	The Basic Matcher

	ID Matching

	Stanza Path Matching

	XPath

	XMLMask

	XML Stream

	Scheduler

	XML Serialization
	Escaping Special Characters

	Python 2.6 File Socket Shims

Core Stanzas

Plugins

Additional Info

	License (MIT)

	Glossary

	Index

	Module Index

	Search Page

Credits

	Main Author: Nathan Fritz [http://andyet.net/team/fritzy]

	fritzy@netflint.net,
@fritzy [http://twitter.com/fritzy]

Nathan is also the author of XMPPHP and Seesmic-AS3-XMPP [http://code.google.com/p/seesmic-as3-xmpp/], and a former member of the XMPP
Council.

	Co-Author: Lance Stout [http://andyet.net/team/lance]

	lancestout@gmail.com,
@lancestout [http://twitter.com/lancestout]

Both Fritzy and Lance work for &yet [http://andyet.net], which specializes in
realtime web and XMPP applications.

	contact@andyet.net

	XMPP Consulting [http://xmppconsulting.com]

	Contributors:

	
	Brian Beggs (macdiesel [http://github.com/macdiesel])

	Dann Martens (dannmartens [http://github.com/dannmartens])

	Florent Le Coz (louiz [http://github.com/louiz])

	Kevin Smith (Kev [http://github.com/Kev], http://kismith.co.uk)

	Remko Tronçon (remko [http://github.com/remko], http://el-tramo.be)

	Te-jé Rogers (te-je [http://github.com/te-je])

	Thom Nichols (tomstrummer [http://github.com/tomstrummer])

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

SleekXMPP Quickstart - Echo Bot

Note

If you have any issues working through this quickstart guide
or the other tutorials here, please either send a message to the
mailing list [http://groups.google.com/group/sleekxmpp-discussion]
or join the chat room at sleek@conference.jabber.org.

If you have not yet installed SleekXMPP, do so now by either checking out a version
from Github [http://github.com/fritzy/SleekXMPP], or installing it using pip
or easy_install.

pip install sleekxmpp # Or: easy_install sleekxmpp

As a basic starting project, we will create an echo bot which will reply to any
messages sent to it. We will also go through adding some basic command line configuration
for enabling or disabling debug log outputs and setting the username and password
for the bot.

For the command line options processing, we will use the built-in optparse
module and the getpass module for reading in passwords.

TL;DR Just Give Me the Code

As you wish: the completed example.

Overview

To get started, here is a brief outline of the structure that the final project will have:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import sys
import logging
import getpass
from optparse import OptionParser

import sleekxmpp

'''Here we will create out echo bot class'''

if __name__ == '__main__':
 '''Here we will configure and read command line options'''

 '''Here we will instantiate our echo bot'''

 '''Finally, we connect the bot and start listening for messages'''

Default Encoding

XMPP requires support for UTF-8 and so SleekXMPP must use UTF-8 as well. In
Python3 this is simple because Unicode is the default string type. For Python2.6+
the situation is not as easy because standard strings are simply byte arrays and
use ASCII. We can get Python to use UTF-8 as the default encoding by including:

if sys.version_info < (3, 0):
 from sleekxmpp.util.misc_ops import setdefaultencoding
 setdefaultencoding('utf8')

Warning

Until we are able to ensure that SleekXMPP will always use Unicode in Python2.6+, this
may cause issues embedding SleekXMPP into other applications which assume ASCII encoding.

Creating the EchoBot Class

There are three main types of entities within XMPP — servers, components, and
clients. Since our echo bot will only be responding to a few people, and won’t need
to remember thousands of users, we will use a client connection. A client connection
is the same type that you use with your standard IM client such as Pidgin or Psi.

SleekXMPP comes with a ClientXMPP class
which we can extend to add our message echoing feature. ClientXMPP
requires the parameters jid and password, so we will let our EchoBot class accept those
as well.

class EchoBot(sleekxmpp.ClientXMPP):

 def __init__(self, jid, password):
 super(EchoBot, self).__init__(jid, password)

Handling Session Start

The XMPP spec requires clients to broadcast its presence and retrieve its roster (buddy list) once
it connects and establishes a session with the XMPP server. Until these two tasks are completed,
some servers may not deliver or send messages or presence notifications to the client. So we now
need to be sure that we retrieve our roster and send an initial presence once the session has
started. To do that, we will register an event handler for the session_start event.

def __init__(self, jid, password):
 super(EchoBot, self).__init__(jid, password)

 self.add_event_handler('session_start', self.start)

Since we want the method self.start to execute when the session_start event is triggered,
we also need to define the self.start handler.

def start(self, event):
 self.send_presence()
 self.get_roster()

Warning

Not sending an initial presence and retrieving the roster when using a client instance can
prevent your program from receiving presence notifications or messages depending on the
XMPP server you have chosen.

Our event handler, like every event handler, accepts a single parameter which typically is the stanza
that was received that caused the event. In this case, event will just be an empty dictionary since
there is no associated data.

Our first task of sending an initial presence is done using send_presence.
Calling send_presence without any arguments will send the simplest
stanza allowed in XMPP:

<presence />

The second requirement is fulfilled using get_roster, which
will send an IQ stanza requesting the roster to the server and then wait for the response. You may be wondering
what get_roster returns since we are not saving any return
value. The roster data is saved by an internal handler to self.roster, and in the case of a ClientXMPP instance to self.client_roster. (The difference between self.roster and
self.client_roster is that self.roster supports storing roster information for multiple JIDs, which is useful
for components, whereas self.client_roster stores roster data for just the client’s JID.)

It is possible for a timeout to occur while waiting for the server to respond, which can happen if the
network is excessively slow or the server is no longer responding. In that case, an IQTimeout is raised. Similarly, an IQError exception can
be raised if the request contained bad data or requested the roster for the wrong user. In either case, you can wrap the
get_roster() call in a try/except block to retry the roster retrieval process.

The XMPP stanzas from the roster retrieval process could look like this:

<iq type="get">
 <query xmlns="jabber:iq:roster" />
</iq>

<iq type="result" to="echobot@example.com" from="example.com">
 <query xmlns="jabber:iq:roster">
 <item jid="friend@example.com" subscription="both" />
 </query>
</iq>

Responding to Messages

Now that an EchoBot instance handles session_start, we can begin receiving and
responding to messages. Now we can register a handler for the message event that is raised
whenever a messsage is received.

def __init__(self, jid, password):
 super(EchoBot, self).__init__(jid, password)

 self.add_event_handler('session_start', self.start)
 self.add_event_handler('message', self.message)

The message event is fired whenever a <message /> stanza is received, including for
group chat messages, errors, etc. Properly responding to messages thus requires checking the
'type' interface of the message stanza object. For responding to only messages
addressed to our bot (and not from a chat room), we check that the type is either normal
or chat. (Other potential types are error, headline, and groupchat.)

def message(self, msg):
 if msg['type'] in ('normal', 'chat'):
 msg.reply("Thanks for sending:\n%s" % msg['body']).send()

Let’s take a closer look at the .reply() method used above. For message stanzas,
.reply() accepts the parameter body (also as the first positional argument),
which is then used as the value of the <body /> element of the message.
Setting the appropriate to JID is also handled by .reply().

Another way to have sent the reply message would be to use send_message,
which is a convenience method for generating and sending a message based on the values passed to it. If we were to use
this method, the above code would look as so:

def message(self, msg):
 if msg['type'] in ('normal', 'chat'):
 self.send_message(mto=msg['from'],
 mbody='Thanks for sending:\n%s' % msg['body'])

Whichever method you choose to use, the results in action will look like this:

<message to="echobot@example.com" from="someuser@example.net" type="chat">
 <body>Hej!</body>
</message>

<message to="someuser@example.net" type="chat">
 <body>Thanks for sending:
 Hej!</body>
</message>

Note

XMPP does not require stanzas sent by a client to include a from attribute, and
leaves that responsibility to the XMPP server. However, if a sent stanza does
include a from attribute, it must match the full JID of the client or some
servers will reject it. SleekXMPP thus leaves out the from attribute when replying
using a client connection.

Command Line Arguments and Logging

While this isn’t part of SleekXMPP itself, we do want our echo bot program to be able
to accept a JID and password from the command line instead of hard coding them. We will
use the optparse module for this, though there are several alternative methods, including
the newer argparse module.

We want to accept three parameters: the JID for the echo bot, its password, and a flag for
displaying the debugging logs. We also want these to be optional parameters, since passing
a password directly through the command line can be a security risk.

if __name__ == '__main__':
 optp = OptionParser()

 optp.add_option('-d', '--debug', help='set logging to DEBUG',
 action='store_const', dest='loglevel',
 const=logging.DEBUG, default=logging.INFO)
 optp.add_option("-j", "--jid", dest="jid",
 help="JID to use")
 optp.add_option("-p", "--password", dest="password",
 help="password to use")

 opts, args = optp.parse_args()

 if opts.jid is None:
 opts.jid = raw_input("Username: ")
 if opts.password is None:
 opts.password = getpass.getpass("Password: ")

Since we included a flag for enabling debugging logs, we need to configure the
logging module to behave accordingly.

if __name__ == '__main__':

 # .. option parsing from above ..

 logging.basicConfig(level=opts.loglevel,
 format='%(levelname)-8s %(message)s')

Connecting to the Server and Processing

	There are three steps remaining until our echo bot is complete:

	
	We need to instantiate the bot.

	The bot needs to connect to an XMPP server.

	We have to instruct the bot to start running and processing messages.

Creating the bot is straightforward, but we can also perform some configuration
at this stage. For example, let’s say we want our bot to support service discovery [http://xmpp.org/extensions/xep-0030.html] and pings [http://xmpp.org/extensions/xep-0199.html]:

if __name__ == '__main__':

 # .. option parsing and logging steps from above

 xmpp = EchoBot(opts.jid, opts.password)
 xmpp.register_plugin('xep_0030') # Service Discovery
 xmpp.register_plugin('xep_0199') # Ping

If the EchoBot class had a hard dependency on a plugin, we could register that plugin in
the EchoBot.__init__ method instead.

Note

If you are using the OpenFire server, you will need to include an additional
configuration step. OpenFire supports a different version of SSL than what
most servers and SleekXMPP support.

import ssl
xmpp.ssl_version = ssl.PROTOCOL_SSLv3

Now we’re ready to connect and begin echoing messages. If you have the package
dnspython installed, then the sleekxmpp.clientxmpp.ClientXMPP() method
will perform a DNS query to find the appropriate server to connect to for the
given JID. If you do not have dnspython, then SleekXMPP will attempt to
connect to the hostname used by the JID, unless an address tuple is supplied
to sleekxmpp.clientxmpp.ClientXMPP().

if __name__ == '__main__':

 # .. option parsing & echo bot configuration

 if xmpp.connect():
 xmpp.process(block=True)
 else:
 print('Unable to connect')

Note

For Google Talk users withouth dnspython installed, the above code
should look like:

if __name__ == '__main__':

 # .. option parsing & echo bot configuration

 if xmpp.connect(('talk.google.com', 5222)):
 xmpp.process(block=True)
 else:
 print('Unable to connect')

To begin responding to messages, you’ll see we called sleekxmpp.basexmpp.BaseXMPP.process()
which will start the event handling, send queue, and XML reader threads. It will also call
the sleekxmpp.plugins.base.base_plugin.post_init() method on all registered plugins. By
passing block=True to sleekxmpp.basexmpp.BaseXMPP.process() we are running the
main processing loop in the main thread of execution. The sleekxmpp.basexmpp.BaseXMPP.process()
call will not return until after SleekXMPP disconnects. If you need to run the client in the background
for another program, use block=False to spawn the processing loop in its own thread.

Note

Before 1.0, controlling the blocking behaviour of sleekxmpp.basexmpp.BaseXMPP.process() was
done via the threaded argument. This arrangement was a source of confusion because some users
interpreted that as controlling whether or not SleekXMPP used threads at all, instead of how
the processing loop itself was spawned.

The statements xmpp.process(threaded=False) and xmpp.process(block=True) are equivalent.

The Final Product

Here then is what the final result should look like after working through the guide above. The code
can also be found in the SleekXMPP examples directory [http://github.com/fritzy/SleekXMPP/tree/master/examples].

You can run the code using:

python echobot.py -d -j echobot@example.com

which will prompt for the password and then begin echoing messages. To test, open
your regular IM client and start a chat with the echo bot. Messages you send to it should
be mirrored back to you. Be careful if you are using the same JID for the echo bot that
you also have logged in with another IM client. Messages could be routed to your IM client instead
of the bot.

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""
 SleekXMPP: The Sleek XMPP Library
 Copyright (C) 2010 Nathanael C. Fritz
 This file is part of SleekXMPP.

 See the file LICENSE for copying permission.
"""

import sys
import logging
import getpass
from optparse import OptionParser

import sleekxmpp

Python versions before 3.0 do not use UTF-8 encoding
by default. To ensure that Unicode is handled properly
throughout SleekXMPP, we will set the default encoding
ourselves to UTF-8.
if sys.version_info < (3, 0):
 from sleekxmpp.util.misc_ops import setdefaultencoding
 setdefaultencoding('utf8')
else:
 raw_input = input

class EchoBot(sleekxmpp.ClientXMPP):

 """
 A simple SleekXMPP bot that will echo messages it
 receives, along with a short thank you message.
 """

 def __init__(self, jid, password):
 sleekxmpp.ClientXMPP.__init__(self, jid, password)

 # The session_start event will be triggered when
 # the bot establishes its connection with the server
 # and the XML streams are ready for use. We want to
 # listen for this event so that we we can initialize
 # our roster.
 self.add_event_handler("session_start", self.start)

 # The message event is triggered whenever a message
 # stanza is received. Be aware that that includes
 # MUC messages and error messages.
 self.add_event_handler("message", self.message)

 def start(self, event):
 """
 Process the session_start event.

 Typical actions for the session_start event are
 requesting the roster and broadcasting an initial
 presence stanza.

 Arguments:
 event -- An empty dictionary. The session_start
 event does not provide any additional
 data.
 """
 self.send_presence()
 self.get_roster()

 def message(self, msg):
 """
 Process incoming message stanzas. Be aware that this also
 includes MUC messages and error messages. It is usually
 a good idea to check the messages's type before processing
 or sending replies.

 Arguments:
 msg -- The received message stanza. See the documentation
 for stanza objects and the Message stanza to see
 how it may be used.
 """
 if msg['type'] in ('chat', 'normal'):
 msg.reply("Thanks for sending\n%(body)s" % msg).send()

if __name__ == '__main__':
 # Setup the command line arguments.
 optp = OptionParser()

 # Output verbosity options.
 optp.add_option('-q', '--quiet', help='set logging to ERROR',
 action='store_const', dest='loglevel',
 const=logging.ERROR, default=logging.INFO)
 optp.add_option('-d', '--debug', help='set logging to DEBUG',
 action='store_const', dest='loglevel',
 const=logging.DEBUG, default=logging.INFO)
 optp.add_option('-v', '--verbose', help='set logging to COMM',
 action='store_const', dest='loglevel',
 const=5, default=logging.INFO)

 # JID and password options.
 optp.add_option("-j", "--jid", dest="jid",
 help="JID to use")
 optp.add_option("-p", "--password", dest="password",
 help="password to use")

 opts, args = optp.parse_args()

 # Setup logging.
 logging.basicConfig(level=opts.loglevel,
 format='%(levelname)-8s %(message)s')

 if opts.jid is None:
 opts.jid = raw_input("Username: ")
 if opts.password is None:
 opts.password = getpass.getpass("Password: ")

 # Setup the EchoBot and register plugins. Note that while plugins may
 # have interdependencies, the order in which you register them does
 # not matter.
 xmpp = EchoBot(opts.jid, opts.password)
 xmpp.register_plugin('xep_0030') # Service Discovery
 xmpp.register_plugin('xep_0004') # Data Forms
 xmpp.register_plugin('xep_0060') # PubSub
 xmpp.register_plugin('xep_0199') # XMPP Ping

 # If you are connecting to Facebook and wish to use the
 # X-FACEBOOK-PLATFORM authentication mechanism, you will need
 # your API key and an access token. Then you'll set:
 # xmpp.credentials['api_key'] = 'THE_API_KEY'
 # xmpp.credentials['access_token'] = 'THE_ACCESS_TOKEN'

 # If you are connecting to MSN, then you will need an
 # access token, and it does not matter what JID you
 # specify other than that the domain is 'messenger.live.com',
 # so '_@messenger.live.com' will work. You can specify
 # the access token as so:
 # xmpp.credentials['access_token'] = 'THE_ACCESS_TOKEN'

 # If you are working with an OpenFire server, you may need
 # to adjust the SSL version used:
 # xmpp.ssl_version = ssl.PROTOCOL_SSLv3

 # If you want to verify the SSL certificates offered by a server:
 # xmpp.ca_certs = "path/to/ca/cert"

 # Connect to the XMPP server and start processing XMPP stanzas.
 if xmpp.connect():
 # If you do not have the dnspython library installed, you will need
 # to manually specify the name of the server if it does not match
 # the one in the JID. For example, to use Google Talk you would
 # need to use:
 #
 # if xmpp.connect(('talk.google.com', 5222)):
 # ...
 xmpp.process(block=False)
 print("Done")
 else:
 print("Unable to connect.")

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Sign in, Send a Message, and Disconnect

Note

If you have any issues working through this quickstart guide
or the other tutorials here, please either send a message to the
mailing list [http://groups.google.com/group/sleekxmpp-discussion]
or join the chat room at sleek@conference.jabber.org.

A common use case for SleekXMPP is to send one-off messages from
time to time. For example, one use case could be sending out a notice when
a shell script finishes a task.

We will create our one-shot bot based on the pattern explained in SleekXMPP Quickstart - Echo Bot. To
start, we create a client class based on ClientXMPP and
register a handler for the session_start event. We will also accept parameters
for the JID that will receive our message, and the string content of the message.

import sleekxmpp

class SendMsgBot(sleekxmpp.ClientXMPP):

 def __init__(self, jid, password, recipient, msg):
 super(SendMsgBot, self).__init__(jid, password)

 self.recipient = recipient
 self.msg = msg

 self.add_event_handler('session_start', self.start)

 def start(self, event):
 self.send_presence()
 self.get_roster()

Note that as in SleekXMPP Quickstart - Echo Bot, we need to include send an initial presence and request
the roster. Next, we want to send our message, and to do that we will use send_message.

def start(self, event):
 self.send_presence()
 self.get_roster()

 self.send_message(mto=self.recipient, mbody=self.msg)

Finally, we need to disconnect the client using disconnect.
Now, sent stanzas are placed in a queue to pass them to the send thread. If we were to call
disconnect without any parameters, then it is possible
for the client to disconnect before the send queue is processed and the message is actually
sent on the wire. To ensure that our message is processed, we use
disconnect(wait=True).

def start(self, event):
 self.send_presence()
 self.get_roster()

 self.send_message(mto=self.recipient, mbody=self.msg)

 self.disconnect(wait=True)

Warning

If you happen to be adding stanzas to the send queue faster than the send thread
can process them, then disconnect(wait=True)
will block and not disconnect.

Final Product

The final step is to create a small runner script for initialising our SendMsgBot class and adding some
basic configuration options. By following the basic boilerplate pattern in SleekXMPP Quickstart - Echo Bot, we arrive
at the code below. To experiment with this example, you can use:

python send_client.py -d -j oneshot@example.com -t someone@example.net -m "This is a message"

which will prompt for the password and then log in, send your message, and then disconnect. To test, open
your regular IM client with the account you wish to send messages to. When you run the send_client.py
example and instruct it to send your IM client account a message, you should receive the message you
gave. If the two JIDs you use also have a mutual presence subscription (they’re on each other’s buddy lists)
then you will also see the SendMsgBot client come online and then go offline.

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""
 SleekXMPP: The Sleek XMPP Library
 Copyright (C) 2010 Nathanael C. Fritz
 This file is part of SleekXMPP.

 See the file LICENSE for copying permission.
"""

import sys
import logging
import getpass
from optparse import OptionParser

import sleekxmpp

Python versions before 3.0 do not use UTF-8 encoding
by default. To ensure that Unicode is handled properly
throughout SleekXMPP, we will set the default encoding
ourselves to UTF-8.
if sys.version_info < (3, 0):
 from sleekxmpp.util.misc_ops import setdefaultencoding
 setdefaultencoding('utf8')
else:
 raw_input = input

class SendMsgBot(sleekxmpp.ClientXMPP):

 """
 A basic SleekXMPP bot that will log in, send a message,
 and then log out.
 """

 def __init__(self, jid, password, recipient, message):
 sleekxmpp.ClientXMPP.__init__(self, jid, password)

 # The message we wish to send, and the JID that
 # will receive it.
 self.recipient = recipient
 self.msg = message

 # The session_start event will be triggered when
 # the bot establishes its connection with the server
 # and the XML streams are ready for use. We want to
 # listen for this event so that we we can initialize
 # our roster.
 self.add_event_handler("session_start", self.start, threaded=True)

 def start(self, event):
 """
 Process the session_start event.

 Typical actions for the session_start event are
 requesting the roster and broadcasting an initial
 presence stanza.

 Arguments:
 event -- An empty dictionary. The session_start
 event does not provide any additional
 data.
 """
 self.send_presence()
 self.get_roster()

 self.send_message(mto=self.recipient,
 mbody=self.msg,
 mtype='chat')

 # Using wait=True ensures that the send queue will be
 # emptied before ending the session.
 self.disconnect(wait=True)

if __name__ == '__main__':
 # Setup the command line arguments.
 optp = OptionParser()

 # Output verbosity options.
 optp.add_option('-q', '--quiet', help='set logging to ERROR',
 action='store_const', dest='loglevel',
 const=logging.ERROR, default=logging.INFO)
 optp.add_option('-d', '--debug', help='set logging to DEBUG',
 action='store_const', dest='loglevel',
 const=logging.DEBUG, default=logging.INFO)
 optp.add_option('-v', '--verbose', help='set logging to COMM',
 action='store_const', dest='loglevel',
 const=5, default=logging.INFO)

 # JID and password options.
 optp.add_option("-j", "--jid", dest="jid",
 help="JID to use")
 optp.add_option("-p", "--password", dest="password",
 help="password to use")
 optp.add_option("-t", "--to", dest="to",
 help="JID to send the message to")
 optp.add_option("-m", "--message", dest="message",
 help="message to send")

 opts, args = optp.parse_args()

 # Setup logging.
 logging.basicConfig(level=opts.loglevel,
 format='%(levelname)-8s %(message)s')

 if opts.jid is None:
 opts.jid = raw_input("Username: ")
 if opts.password is None:
 opts.password = getpass.getpass("Password: ")
 if opts.to is None:
 opts.to = raw_input("Send To: ")
 if opts.message is None:
 opts.message = raw_input("Message: ")

 # Setup the EchoBot and register plugins. Note that while plugins may
 # have interdependencies, the order in which you register them does
 # not matter.
 xmpp = SendMsgBot(opts.jid, opts.password, opts.to, opts.message)
 xmpp.register_plugin('xep_0030') # Service Discovery
 xmpp.register_plugin('xep_0199') # XMPP Ping

 # If you are working with an OpenFire server, you may need
 # to adjust the SSL version used:
 # xmpp.ssl_version = ssl.PROTOCOL_SSLv3

 # If you want to verify the SSL certificates offered by a server:
 # xmpp.ca_certs = "path/to/ca/cert"

 # Connect to the XMPP server and start processing XMPP stanzas.
 if xmpp.connect():
 # If you do not have the dnspython library installed, you will need
 # to manually specify the name of the server if it does not match
 # the one in the JID. For example, to use Google Talk you would
 # need to use:
 #
 # if xmpp.connect(('talk.google.com', 5222)):
 # ...
 xmpp.process(block=True)
 print("Done")
 else:
 print("Unable to connect.")

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Create and Run a Server Component

Note

If you have any issues working through this quickstart guide
or the other tutorials here, please either send a message to the
mailing list [http://groups.google.com/group/sleekxmpp-discussion]
or join the chat room at sleek@conference.jabber.org.

If you have not yet installed SleekXMPP, do so now by either checking out a version
from Github [http://github.com/fritzy/SleekXMPP], or installing it using pip
or easy_install.

pip install sleekxmpp # Or: easy_install sleekxmpp

Many XMPP applications eventually graduate to requiring to run as a server
component in order to meet scalability requirements. To demonstrate how to
turn an XMPP client bot into a component, we’ll turn the echobot example
(SleekXMPP Quickstart - Echo Bot) into a component version.

The first difference is that we will add an additional import statement:

from sleekxmpp.componentxmpp import ComponentXMPP

Likewise, we will change the bot’s class definition to match:

class EchoComponent(ComponentXMPP):

 def __init__(self, jid, secret, server, port):
 ComponentXMPP.__init__(self, jid, secret, server, port)

A component instance requires two extra parameters compared to a client
instance: server and port. These specifiy the name and port of
the XMPP server that will be accepting the component. For example, for
a MUC component, the following could be used:

muc = ComponentXMPP('muc.sleekxmpp.com', '******', 'sleekxmpp.com', 5555)

Note

The server value is NOT derived from the provided JID for the
component, unlike with client connections.

One difference with the component version is that we do not have
to handle the session_start event if we don’t wish to deal
with presence.

The other, main difference with components is that the
'from' value for every stanza must be explicitly set, since
components may send stanzas from multiple JIDs. To do so,
the send_message() and
send_presence() accept the parameters
mfrom and pfrom, respectively. For any method that uses
Iq stanzas, ifrom may be used.

Final Product

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""
 SleekXMPP: The Sleek XMPP Library
 Copyright (C) 2010 Nathanael C. Fritz
 This file is part of SleekXMPP.

 See the file LICENSE for copying permission.
"""

import sys
import logging
import getpass
from optparse import OptionParser

import sleekxmpp
from sleekxmpp.componentxmpp import ComponentXMPP

Python versions before 3.0 do not use UTF-8 encoding
by default. To ensure that Unicode is handled properly
throughout SleekXMPP, we will set the default encoding
ourselves to UTF-8.
if sys.version_info < (3, 0):
 from sleekxmpp.util.misc_ops import setdefaultencoding
 setdefaultencoding('utf8')
else:
 raw_input = input

class EchoComponent(ComponentXMPP):

 """
 A simple SleekXMPP component that echoes messages.
 """

 def __init__(self, jid, secret, server, port):
 ComponentXMPP.__init__(self, jid, secret, server, port)

 # You don't need a session_start handler, but that is
 # where you would broadcast initial presence.

 # The message event is triggered whenever a message
 # stanza is received. Be aware that that includes
 # MUC messages and error messages.
 self.add_event_handler("message", self.message)

 def message(self, msg):
 """
 Process incoming message stanzas. Be aware that this also
 includes MUC messages and error messages. It is usually
 a good idea to check the messages's type before processing
 or sending replies.

 Since a component may send messages from any number of JIDs,
 it is best to always include a from JID.

 Arguments:
 msg -- The received message stanza. See the documentation
 for stanza objects and the Message stanza to see
 how it may be used.
 """
 # The reply method will use the messages 'to' JID as the
 # outgoing reply's 'from' JID.
 msg.reply("Thanks for sending\n%(body)s" % msg).send()

if __name__ == '__main__':
 # Setup the command line arguments.
 optp = OptionParser()

 # Output verbosity options.
 optp.add_option('-q', '--quiet', help='set logging to ERROR',
 action='store_const', dest='loglevel',
 const=logging.ERROR, default=logging.INFO)
 optp.add_option('-d', '--debug', help='set logging to DEBUG',
 action='store_const', dest='loglevel',
 const=logging.DEBUG, default=logging.INFO)
 optp.add_option('-v', '--verbose', help='set logging to COMM',
 action='store_const', dest='loglevel',
 const=5, default=logging.INFO)

 # JID and password options.
 optp.add_option("-j", "--jid", dest="jid",
 help="JID to use")
 optp.add_option("-p", "--password", dest="password",
 help="password to use")
 optp.add_option("-s", "--server", dest="server",
 help="server to connect to")
 optp.add_option("-P", "--port", dest="port",
 help="port to connect to")

 opts, args = optp.parse_args()

 if opts.jid is None:
 opts.jid = raw_input("Component JID: ")
 if opts.password is None:
 opts.password = getpass.getpass("Password: ")
 if opts.server is None:
 opts.server = raw_input("Server: ")
 if opts.port is None:
 opts.port = int(raw_input("Port: "))

 # Setup logging.
 logging.basicConfig(level=opts.loglevel,
 format='%(levelname)-8s %(message)s')

 # Setup the EchoComponent and register plugins. Note that while plugins
 # may have interdependencies, the order in which you register them does
 # not matter.
 xmpp = EchoComponent(opts.jid, opts.password, opts.server, opts.port)
 xmpp.registerPlugin('xep_0030') # Service Discovery
 xmpp.registerPlugin('xep_0004') # Data Forms
 xmpp.registerPlugin('xep_0060') # PubSub
 xmpp.registerPlugin('xep_0199') # XMPP Ping

 # Connect to the XMPP server and start processing XMPP stanzas.
 if xmpp.connect():
 xmpp.process(block=True)
 print("Done")
 else:
 print("Unable to connect.")

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Manage Presence Subscriptions

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Mulit-User Chat (MUC) Bot

Note

If you have any issues working through this quickstart guide
or the other tutorials here, please either send a message to the
mailing list [http://groups.google.com/group/sleekxmpp-discussion]
or join the chat room at sleek@conference.jabber.org.

If you have not yet installed SleekXMPP, do so now by either checking out a version
from Github [http://github.com/fritzy/SleekXMPP], or installing it using pip
or easy_install.

pip install sleekxmpp # Or: easy_install sleekxmpp

Now that you’ve got the basic gist of using SleekXMPP by following the
echobot example (SleekXMPP Quickstart - Echo Bot), we can use one of the bundled plugins
to create a very popular XMPP starter project: a Multi-User Chat [http://xmpp.org/extensions/xep-0045.html]
(MUC) bot. Our bot will login to an XMPP server, join an MUC chat room
and “lurk” indefinitely, responding with a generic message to anyone
that mentions its nickname. It will also greet members as they join the
chat room.

Joining The Room

As usual, our code will be based on the pattern explained in SleekXMPP Quickstart - Echo Bot.
To start, we create an MUCBot class based on
ClientXMPP and which accepts
parameters for the JID of the MUC room to join, and the nick that the
bot will use inside the chat room. We also register an
event handler for the session_start event.

import sleekxmpp

class MUCBot(sleekxmpp.ClientXMPP):

 def __init__(self, jid, password, room, nick):
 sleekxmpp.ClientXMPP.__init__(self, jid, password)

 self.room = room
 self.nick = nick

 self.add_event_handler("session_start", self.start)

After initialization, we also need to register the MUC (XEP-0045) plugin
so that we can make use of the group chat plugin’s methods and events.

xmpp.register_plugin('xep_0045')

Finally, we can make our bot join the chat room once an XMPP session
has been established:

def start(self, event):
 self.get_roster()
 self.send_presence()
 self.plugin['xep_0045'].joinMUC(self.room,
 self.nick,
 wait=True)

Note that as in SleekXMPP Quickstart - Echo Bot, we need to include send an initial presence and request
the roster. Next, we want to join the group chat, so we call the
joinMUC method of the MUC plugin.

Note

The plugin attribute is
dictionary that maps to instances of plugins that we have previously
registered, by their names.

Adding Functionality

Currently, our bot just sits dormantly inside the chat room, but we
would like it to respond to two distinct events by issuing a generic
message in each case to the chat room. In particular, when a member
mentions the bot’s nickname inside the chat room, and when a member
joins the chat room.

Responding to Mentions

Whenever a user mentions our bot’s nickname in chat, our bot will
respond with a generic message resembling “I heard that, user.” We do
this by examining all of the messages sent inside the chat and looking
for the ones which contain the nickname string.

First, we register an event handler for the groupchat_message
event inside the bot’s __init__ function.

Note

We do not register a handler for the message event in this
bot, but if we did, the group chat message would have been sent to
both handlers.

def __init__(self, jid, password, room, nick):
 sleekxmpp.ClientXMPP.__init__(self, jid, password)

 self.room = room
 self.nick = nick

 self.add_event_handler("session_start", self.start)
 self.add_event_handler("groupchat_message", self.muc_message)

Then, we can send our generic message whenever the bot’s nickname gets
mentioned.

Warning

Always check that a message is not from yourself,
otherwise you will create an infinite loop responding
to your own messages.

def muc_message(self, msg):
 if msg['mucnick'] != self.nick and self.nick in msg['body']:
 self.send_message(mto=msg['from'].bare,
 mbody="I heard that, %s." % msg['mucnick'],
 mtype='groupchat')

Greeting Members

Now we want to greet member whenever they join the group chat. To
do this we will use the dynamic muc::room@server::got_online [1]
event so it’s a good idea to register an event handler for it.

Note

The groupchat_presence event is triggered whenever a
presence stanza is received from any chat room, including
any presences you send yourself. To limit event handling
to a single room, use the events muc::room@server::presence,
muc::room@server::got_online, or muc::room@server::got_offline.

def __init__(self, jid, password, room, nick):
 sleekxmpp.ClientXMPP.__init__(self, jid, password)

 self.room = room
 self.nick = nick

 self.add_event_handler("session_start", self.start)
 self.add_event_handler("groupchat_message", self.muc_message)
 self.add_event_handler("muc::%s::got_online" % self.room,
 self.muc_online)

Now all that’s left to do is to greet them:

def muc_online(self, presence):
 if presence['muc']['nick'] != self.nick:
 self.send_message(mto=presence['from'].bare,
 mbody="Hello, %s %s" % (presence['muc']['role'],
 presence['muc']['nick']),
 mtype='groupchat')

	[1]	this is similar to the got_online event and is sent by
the xep_0045 plugin whenever a member joins the referenced
MUC chat room.

Final Product

The final step is to create a small runner script for initialising our MUCBot class and adding some
basic configuration options. By following the basic boilerplate pattern in SleekXMPP Quickstart - Echo Bot, we arrive
at the code below. To experiment with this example, you can use:

python muc.py -d -j jid@example.com -r room@muc.example.net -n lurkbot

which will prompt for the password, log in, and join the group chat. To test, open
your regular IM client and join the same group chat that you sent the bot to. You
will see lurkbot as one of the members in the group chat, and that it greeted
you upon entry. Send a message with the string “lurkbot” inside the body text, and you
will also see that it responds with our pre-programmed customized message.

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""
 SleekXMPP: The Sleek XMPP Library
 Copyright (C) 2010 Nathanael C. Fritz
 This file is part of SleekXMPP.

 See the file LICENSE for copying permission.
"""

import sys
import logging
import getpass
from optparse import OptionParser

import sleekxmpp

Python versions before 3.0 do not use UTF-8 encoding
by default. To ensure that Unicode is handled properly
throughout SleekXMPP, we will set the default encoding
ourselves to UTF-8.
if sys.version_info < (3, 0):
 from sleekxmpp.util.misc_ops import setdefaultencoding
 setdefaultencoding('utf8')
else:
 raw_input = input

class MUCBot(sleekxmpp.ClientXMPP):

 """
 A simple SleekXMPP bot that will greets those
 who enter the room, and acknowledge any messages
 that mentions the bot's nickname.
 """

 def __init__(self, jid, password, room, nick):
 sleekxmpp.ClientXMPP.__init__(self, jid, password)

 self.room = room
 self.nick = nick

 # The session_start event will be triggered when
 # the bot establishes its connection with the server
 # and the XML streams are ready for use. We want to
 # listen for this event so that we we can initialize
 # our roster.
 self.add_event_handler("session_start", self.start)

 # The groupchat_message event is triggered whenever a message
 # stanza is received from any chat room. If you also also
 # register a handler for the 'message' event, MUC messages
 # will be processed by both handlers.
 self.add_event_handler("groupchat_message", self.muc_message)

 # The groupchat_presence event is triggered whenever a
 # presence stanza is received from any chat room, including
 # any presences you send yourself. To limit event handling
 # to a single room, use the events muc::room@server::presence,
 # muc::room@server::got_online, or muc::room@server::got_offline.
 self.add_event_handler("muc::%s::got_online" % self.room,
 self.muc_online)

 def start(self, event):
 """
 Process the session_start event.

 Typical actions for the session_start event are
 requesting the roster and broadcasting an initial
 presence stanza.

 Arguments:
 event -- An empty dictionary. The session_start
 event does not provide any additional
 data.
 """
 self.get_roster()
 self.send_presence()
 self.plugin['xep_0045'].joinMUC(self.room,
 self.nick,
 # If a room password is needed, use:
 # password=the_room_password,
 wait=True)

 def muc_message(self, msg):
 """
 Process incoming message stanzas from any chat room. Be aware
 that if you also have any handlers for the 'message' event,
 message stanzas may be processed by both handlers, so check
 the 'type' attribute when using a 'message' event handler.

 Whenever the bot's nickname is mentioned, respond to
 the message.

 IMPORTANT: Always check that a message is not from yourself,
 otherwise you will create an infinite loop responding
 to your own messages.

 This handler will reply to messages that mention
 the bot's nickname.

 Arguments:
 msg -- The received message stanza. See the documentation
 for stanza objects and the Message stanza to see
 how it may be used.
 """
 if msg['mucnick'] != self.nick and self.nick in msg['body']:
 self.send_message(mto=msg['from'].bare,
 mbody="I heard that, %s." % msg['mucnick'],
 mtype='groupchat')

 def muc_online(self, presence):
 """
 Process a presence stanza from a chat room. In this case,
 presences from users that have just come online are
 handled by sending a welcome message that includes
 the user's nickname and role in the room.

 Arguments:
 presence -- The received presence stanza. See the
 documentation for the Presence stanza
 to see how else it may be used.
 """
 if presence['muc']['nick'] != self.nick:
 self.send_message(mto=presence['from'].bare,
 mbody="Hello, %s %s" % (presence['muc']['role'],
 presence['muc']['nick']),
 mtype='groupchat')

if __name__ == '__main__':
 # Setup the command line arguments.
 optp = OptionParser()

 # Output verbosity options.
 optp.add_option('-q', '--quiet', help='set logging to ERROR',
 action='store_const', dest='loglevel',
 const=logging.ERROR, default=logging.INFO)
 optp.add_option('-d', '--debug', help='set logging to DEBUG',
 action='store_const', dest='loglevel',
 const=logging.DEBUG, default=logging.INFO)
 optp.add_option('-v', '--verbose', help='set logging to COMM',
 action='store_const', dest='loglevel',
 const=5, default=logging.INFO)

 # JID and password options.
 optp.add_option("-j", "--jid", dest="jid",
 help="JID to use")
 optp.add_option("-p", "--password", dest="password",
 help="password to use")
 optp.add_option("-r", "--room", dest="room",
 help="MUC room to join")
 optp.add_option("-n", "--nick", dest="nick",
 help="MUC nickname")

 opts, args = optp.parse_args()

 # Setup logging.
 logging.basicConfig(level=opts.loglevel,
 format='%(levelname)-8s %(message)s')

 if opts.jid is None:
 opts.jid = raw_input("Username: ")
 if opts.password is None:
 opts.password = getpass.getpass("Password: ")
 if opts.room is None:
 opts.room = raw_input("MUC room: ")
 if opts.nick is None:
 opts.nick = raw_input("MUC nickname: ")

 # Setup the MUCBot and register plugins. Note that while plugins may
 # have interdependencies, the order in which you register them does
 # not matter.
 xmpp = MUCBot(opts.jid, opts.password, opts.room, opts.nick)
 xmpp.register_plugin('xep_0030') # Service Discovery
 xmpp.register_plugin('xep_0045') # Multi-User Chat
 xmpp.register_plugin('xep_0199') # XMPP Ping

 # Connect to the XMPP server and start processing XMPP stanzas.
 if xmpp.connect():
 # If you do not have the dnspython library installed, you will need
 # to manually specify the name of the server if it does not match
 # the one in the JID. For example, to use Google Talk you would
 # need to use:
 #
 # if xmpp.connect(('talk.google.com', 5222)):
 # ...
 xmpp.process(block=True)
 print("Done")
 else:
 print("Unable to connect.")

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Enable HTTP Proxy Support

Note

If you have any issues working through this quickstart guide
or the other tutorials here, please either send a message to the
mailing list [http://groups.google.com/group/sleekxmpp-discussion]
or join the chat room at sleek@conference.jabber.org.

In some instances, you may wish to route XMPP traffic through
an HTTP proxy, probably to get around restrictive firewalls.
SleekXMPP provides support for basic HTTP proxying with DIGEST
authentication.

Enabling proxy support is done in two steps. The first is to instruct SleekXMPP
to use a proxy, and the second is to configure the proxy details:

xmpp = ClientXMPP(...)
xmpp.use_proxy = True
xmpp.proxy_config = {
 'host': 'proxy.example.com',
 'port': 5555,
 'username': 'example_user',
 'password': '******'
}

The 'username' and 'password' fields are optional if the proxy does not
require authentication.

The Final Product

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""
 SleekXMPP: The Sleek XMPP Library
 Copyright (C) 2010 Nathanael C. Fritz
 This file is part of SleekXMPP.

 See the file LICENSE for copying permission.
"""

import sys
import logging
import getpass
from optparse import OptionParser

import sleekxmpp

Python versions before 3.0 do not use UTF-8 encoding
by default. To ensure that Unicode is handled properly
throughout SleekXMPP, we will set the default encoding
ourselves to UTF-8.
if sys.version_info < (3, 0):
 from sleekxmpp.util.misc_ops import setdefaultencoding
 setdefaultencoding('utf8')
else:
 raw_input = input

class EchoBot(sleekxmpp.ClientXMPP):

 """
 A simple SleekXMPP bot that will echo messages it
 receives, along with a short thank you message.
 """

 def __init__(self, jid, password):
 sleekxmpp.ClientXMPP.__init__(self, jid, password)

 # The session_start event will be triggered when
 # the bot establishes its connection with the server
 # and the XML streams are ready for use. We want to
 # listen for this event so that we we can initialize
 # our roster.
 self.add_event_handler("session_start", self.start)

 # The message event is triggered whenever a message
 # stanza is received. Be aware that that includes
 # MUC messages and error messages.
 self.add_event_handler("message", self.message)

 def start(self, event):
 """
 Process the session_start event.

 Typical actions for the session_start event are
 requesting the roster and broadcasting an initial
 presence stanza.

 Arguments:
 event -- An empty dictionary. The session_start
 event does not provide any additional
 data.
 """
 self.send_presence()
 self.get_roster()

 def message(self, msg):
 """
 Process incoming message stanzas. Be aware that this also
 includes MUC messages and error messages. It is usually
 a good idea to check the messages's type before processing
 or sending replies.

 Arguments:
 msg -- The received message stanza. See the documentation
 for stanza objects and the Message stanza to see
 how it may be used.
 """
 msg.reply("Thanks for sending\n%(body)s" % msg).send()

if __name__ == '__main__':
 # Setup the command line arguments.
 optp = OptionParser()

 # Output verbosity options.
 optp.add_option('-q', '--quiet', help='set logging to ERROR',
 action='store_const', dest='loglevel',
 const=logging.ERROR, default=logging.INFO)
 optp.add_option('-d', '--debug', help='set logging to DEBUG',
 action='store_const', dest='loglevel',
 const=logging.DEBUG, default=logging.INFO)
 optp.add_option('-v', '--verbose', help='set logging to COMM',
 action='store_const', dest='loglevel',
 const=5, default=logging.INFO)

 # JID and password options.
 optp.add_option("-j", "--jid", dest="jid",
 help="JID to use")
 optp.add_option("-p", "--password", dest="password",
 help="password to use")
 optp.add_option("--phost", dest="proxy_host",
 help="Proxy hostname")
 optp.add_option("--pport", dest="proxy_port",
 help="Proxy port")
 optp.add_option("--puser", dest="proxy_user",
 help="Proxy username")
 optp.add_option("--ppass", dest="proxy_pass",
 help="Proxy password")

 opts, args = optp.parse_args()

 # Setup logging.
 logging.basicConfig(level=opts.loglevel,
 format='%(levelname)-8s %(message)s')

 if opts.jid is None:
 opts.jid = raw_input("Username: ")
 if opts.password is None:
 opts.password = getpass.getpass("Password: ")
 if opts.proxy_host is None:
 opts.proxy_host = raw_input("Proxy host: ")
 if opts.proxy_port is None:
 opts.proxy_port = raw_input("Proxy port: ")
 if opts.proxy_user is None:
 opts.proxy_user = raw_input("Proxy username: ")
 if opts.proxy_pass is None and opts.proxy_user:
 opts.proxy_pass = getpass.getpass("Proxy password: ")

 # Setup the EchoBot and register plugins. Note that while plugins may
 # have interdependencies, the order in which you register them does
 # not matter.
 xmpp = EchoBot(opts.jid, opts.password)
 xmpp.register_plugin('xep_0030') # Service Discovery
 xmpp.register_plugin('xep_0004') # Data Forms
 xmpp.register_plugin('xep_0060') # PubSub
 xmpp.register_plugin('xep_0199') # XMPP Ping

 # If you are working with an OpenFire server, you may need
 # to adjust the SSL version used:
 # xmpp.ssl_version = ssl.PROTOCOL_SSLv3

 # If you want to verify the SSL certificates offered by a server:
 # xmpp.ca_certs = "path/to/ca/cert"

 xmpp.use_proxy = True
 xmpp.proxy_config = {
 'host': opts.proxy_host,
 'port': int(opts.proxy_port),
 'username': opts.proxy_user,
 'password': opts.proxy_pass}

 # Connect to the XMPP server and start processing XMPP stanzas.
 if xmpp.connect():
 # If you do not have the dnspython library installed, you will need
 # to manually specify the name of the server if it does not match
 # the one in the JID. For example, to use Google Talk you would
 # need to use:
 #
 # if xmpp.connect(('talk.google.com', 5222)):
 # ...
 xmpp.process(block=True)
 print("Done")
 else:
 print("Unable to connect.")

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Send a Message Every 5 Minutes

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Send/Receive IQ Stanzas

Unlike Message and
Presence stanzas which only use
text data for basic usage, Iq stanzas
require using XML payloads, and generally entail creating a new
SleekXMPP plugin to provide the necessary convenience methods to
make working with them easier.

Basic Use

XMPP’s use of Iq stanzas is built around
namespaced <query /> elements. For clients, just sending the
empty <query /> element will suffice for retrieving information. For
example, a very basic implementation of service discovery would just
need to be able to send:

<iq to="user@example.com" type="get" id="1">
 <query xmlns="http://jabber.org/protocol/disco#info" />
</iq>

Creating Iq Stanzas

SleekXMPP provides built-in support for creating basic Iq
stanzas this way. The relevant methods are:

	make_iq()

	make_iq_get()

	make_iq_set()

	make_iq_result()

	make_iq_error()

	make_iq_query()

These methods all follow the same pattern: create or modify an existing
Iq stanza, set the 'type' value based
on the method name, and finally add a <query /> element with the given
namespace. For example, to produce the query above, you would use:

self.make_iq_get(queryxmlns='http://jabber.org/protocol/disco#info',
 ito='user@example.com')

Sending Iq Stanzas

Once an Iq stanza is created, sending it
over the wire is done using its send()
method, like any other stanza object. However, there are a few extra
options to control how to wait for the query’s response.

These options are:

	block: The default behaviour is that send()
will block until a response is received and the response stanza will be the
return value. Setting block to False will cause the call to return
immediately. In which case, you will need to arrange some way to capture
the response stanza if you need it.

	timeout: When using the blocking behaviour, the call will eventually
timeout with an error. The default timeout is 30 seconds, but this may
be overidden two ways. To change the timeout globally, set:

self.response_timeout = 10

To change the timeout for a single call, the timeout parameter works:

iq.send(timeout=60)

	callback: When not using a blocking call, using the callback
argument is a simple way to register a handler that will execute
whenever a response is finally received. Using this method, there
is no timeout limit. In case you need to remove the callback, the
name of the newly created callback is returned.

cb_name = iq.send(callback=self.a_callback)

... later if we need to cancel
self.remove_handler(cb_name)

Properly working with Iq stanzas requires
handling the intended, normal flow, error responses, and timed out
requests. To make this easier, two exceptions may be thrown by
send(): IqError
and IqTimeout. These exceptions only
apply to the default, blocking calls.

try:
 resp = iq.send()
 # ... do stuff with expected Iq result
except IqError as e:
 err_resp = e.iq
 # ... handle error case
except IqTimeout:
 # ... no response received in time
 pass

If you do not care to distinguish between errors and timeouts, then you
can combine both cases with a generic XMPPError
exception:

try:
 resp = iq.send()
except XMPPError:
 # ... Don't care about the response
 pass

Advanced Use

Going beyond the basics provided by SleekXMPP requires building at least a
rudimentary SleekXMPP plugin to create a stanza object for
interfacting with the Iq payload.

See also

	Creating a SleekXMPP Plugin

	How to Work with Stanza Objects

	Using Stream Handlers and Matchers

The typical way to respond to Iq requests is
to register stream handlers. As an example, suppose we create a stanza class
named CustomXEP which uses the XML element <query xmlns="custom-xep" />,
and has a plugin_attrib value
of custom_xep.

There are two types of incoming Iq requests:
get and set. You can register a handler that will accept both and then
filter by type as needed, as so:

self.register_handler(Callback(
 'CustomXEP Handler',
 StanzaPath('iq/custom_xep'),
 self._handle_custom_iq))

...

def _handle_custom_iq(self, iq):
 if iq['type'] == 'get':
 # ...
 pass
 elif iq['type'] == 'set':
 # ...
 pass
 else:
 # ... This will capture error responses too
 pass

If you want to filter out query types beforehand, you can adjust the matching
filter by using @type=get or @type=set if you are using the recommended
StanzaPath matcher.

self.register_handler(Callback(
 'CustomXEP Handler',
 StanzaPath('iq@type=get/custom_xep'),
 self._handle_custom_iq_get))

...

def _handle_custom_iq_get(self, iq):
 assert(iq['type'] == 'get')

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Supported XEPS

	XEP
	Description
	Notes

	0004 [http://xmpp.org/extensions/xep-0004.html]
	Data forms
	

	0009 [http://xmpp.org/extensions/xep-0009.html]
	Jabber RPC
	

	0012 [http://xmpp.org/extensions/xep-0012.html]
	Last Activity
	

	0030 [http://xmpp.org/extensions/xep-0030.html]
	Service Discovery
	

	0033 [http://xmpp.org/extensions/xep-0033.html]
	Extended Stanza Addressing
	

	0045 [http://xmpp.org/extensions/xep-0045.html]
	Multi-User Chat (MUC)
	Client-side only

	0050 [http://xmpp.org/extensions/xep-0050.html]
	Ad-hoc Commands
	

	0059 [http://xmpp.org/extensions/xep-0059.html]
	Result Set Management
	

	0060 [http://xmpp.org/extensions/xep-0060.html]
	Publish/Subscribe (PubSub)
	Client-side only

	0066 [http://xmpp.org/extensions/xep-0066.html]
	Out-of-band Data
	

	0078 [http://xmpp.org/extensions/xep-0078.html]
	Non-SASL Authentication
	

	0082 [http://xmpp.org/extensions/xep-0082.html]
	XMPP Date and Time Profiles
	

	0085 [http://xmpp.org/extensions/xep-0085.html]
	Chat-State Notifications
	

	0086 [http://xmpp.org/extensions/xep-0086.html]
	Error Condition Mappings
	

	0092 [http://xmpp.org/extensions/xep-0092.html]
	Software Version
	

	0128 [http://xmpp.org/extensions/xep-0128.html]
	Service Discovery Extensions
	

	0202 [http://xmpp.org/extensions/xep-0202.html]
	Entity Time
	

	0203 [http://xmpp.org/extensions/xep-0203.html]
	Delayed Delivery
	

	0224 [http://xmpp.org/extensions/xep-0224.html]
	Attention
	

	0249 [http://xmpp.org/extensions/xep-0249.html]
	Direct MUC Invitations
	

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Following XMPP: The Definitive Guide

SleekXMPP was featured in the first edition of the O’Reilly book
XMPP: The Definitive Guide [http://oreilly.com/catalog/9780596521271/]
by Peter Saint-Andre, Kevin Smith, and Remko Tronçon. The original source code
for the book’s examples can be found at http://github.com/remko/xmpp-tdg. An
updated version of the source code, maintained to stay current with the latest
SleekXMPP release, is available at http://github.com/legastero/xmpp-tdg.

However, since publication, SleekXMPP has advanced from version 0.2.1 to version
1.0 and there have been several major API changes. The most notable is the
introduction of stanza objects which have simplified and
standardized interactions with the XMPP XML stream.

What follows is a walk-through of The Definitive Guide highlighting the
changes needed to make the code examples work with version 1.0 of SleekXMPP.
These changes have been kept to a minimum to preserve the correlation with
the book’s explanations, so be aware that some code may not use current best
practices.

Example 2-2. (Page 26)

Implementation of a basic bot that echoes all incoming messages back to its sender.

The echo bot example requires a change to the handleIncomingMessage method
to reflect the use of the Message stanza object. The
"jid" field of the message object should now be "from" to match the
from attribute of the actual XML message stanza. Likewise, "message"
changes to "body" to match the body element of the message stanza.

Updated Code

def handleIncomingMessage(self, message):
 self.xmpp.sendMessage(message["from"], message["body"])

View full source [http://github.com/legastero/xmpp-tdg/blob/master/code/EchoBot/EchoBot.py] |
View original code [http://github.com/remko/xmpp-tdg/blob/master/code/EchoBot/EchoBot.py]

Example 14-1. (Page 215)

CheshiR IM bot implementation.

The main event handling method in the Bot class is meant to process both message
events and presence update events. With the new changes in SleekXMPP 1.0,
extracting a CheshiR status “message” from both types of stanzas
requires accessing different attributes. In the case of a message stanza, the
"body" attribute would contain the CheshiR message. For a presence event,
the information is stored in the "status" attribute. To handle both cases,
we can test the type of the given event object and look up the proper attribute
based on the type.

Like in the EchoBot example, the expression event["jid"] needs to change
to event["from"] in order to get a JID object for the stanza’s sender.
Because other functions in CheshiR assume that the JID is a string, the jid
attribute is used to access the string version of the JID. A check is also added
in case user is None, but the check could (and probably should) be
placed in addMessageFromUser.

Another change is needed in handleMessageAddedToBackend where
an HTML-IM response is created. The HTML content should be enclosed in a single
element, such as a <p> tag.

Updated Code

def handleIncomingXMPPEvent(self, event):
 msgLocations = {sleekxmpp.stanza.presence.Presence: "status",
 sleekxmpp.stanza.message.Message: "body"}

 message = event[msgLocations[type(event)]]
 user = self.backend.getUserFromJID(event["from"].jid)
 if user is not None:
 self.backend.addMessageFromUser(message, user)

def handleMessageAddedToBackend(self, message) :
 body = message.user + ": " + message.text
 htmlBody = "<p>%(user)s: %(message)s</p>" % {
 "uri": self.url + "/" + message.user,
 "user" : message.user, "message" : message.text }
 for subscriberJID in self.backend.getSubscriberJIDs(message.user) :
 self.xmpp.sendMessage(subscriberJID, body, mhtml=htmlBody)

View full source [http://github.com/legastero/xmpp-tdg/blob/master/code/CheshiR/Bot.py] |
View original code [http://github.com/remko/xmpp-tdg/blob/master/code/CheshiR/Bot.py]

Example 14-3. (Page 217)

Configurable CheshiR IM bot implementation.

Note

Since the CheshiR examples build on each other, see previous sections for
corrections to code that is not marked as new in the book example.

The main difference for the configurable IM bot is the handling for the
data form in handleConfigurationCommand. The test for equality
with the string "1" is no longer required; SleekXMPP converts
boolean data form fields to the values True and False
automatically.

For the method handleIncomingXMPPPresence, the attribute
"jid" is again converted to "from" to get a JID
object for the presence stanza’s sender, and the jid attribute is
used to access the string version of that JID object. A check is also added in
case user is None, but the check could (and probably
should) be placed in getShouldMonitorPresenceFromUser.

Updated Code

def handleConfigurationCommand(self, form, sessionId):
 values = form.getValues()
 monitorPresence =values["monitorPresence"]
 jid = self.xmpp.plugin["xep_0050"].sessions[sessionId]["jid"]
 user = self.backend.getUserFromJID(jid)
 self.backend.setShouldMonitorPresenceFromUser(user, monitorPresence)

def handleIncomingXMPPPresence(self, event):
 user = self.backend.getUserFromJID(event["from"].jid)
 if user is not None:
 if self.backend.getShouldMonitorPresenceFromUser(user):
 self.handleIncomingXMPPEvent(event)

View full source [http://github.com/legastero/xmpp-tdg/blob/master/code/CheshiR/ConfigurableBot.py] |
View original code [http://github.com/remko/xmpp-tdg/blob/master/code/CheshiR/ConfigurableBot.py]

Example 14-4. (Page 220)

CheshiR IM server component implementation.

Note

Since the CheshiR examples build on each other, see previous sections for
corrections to code that is not marked as new in the book example.

Like several previous examples, a needed change is to replace
subscription["from"] with subscription["from"].jid because the
BaseXMPP method makePresence requires the JID to be a string.

A correction needs to be made in handleXMPPPresenceProbe because a line was
left out of the original implementation; the variable user is undefined. The
JID of the user can be extracted from the presence stanza’s from attribute.

Since this implementation of CheshiR uses an XMPP component, it must
include a from attribute in all messages that it sends. Adding the
from attribute is done by including mfrom=self.xmpp.jid in calls to
self.xmpp.sendMessage.

Updated Code

def handleXMPPPresenceProbe(self, event) :
 self.xmpp.sendPresence(pto = event["from"])

def handleXMPPPresenceSubscription(self, subscription) :
 if subscription["type"] == "subscribe" :
 userJID = subscription["from"].jid
 self.xmpp.sendPresenceSubscription(pto=userJID, ptype="subscribed")
 self.xmpp.sendPresence(pto = userJID)
 self.xmpp.sendPresenceSubscription(pto=userJID, ptype="subscribe")

def handleMessageAddedToBackend(self, message) :
 body = message.user + ": " + message.text
 for subscriberJID in self.backend.getSubscriberJIDs(message.user) :
 self.xmpp.sendMessage(subscriberJID, body, mfrom=self.xmpp.jid)

View full source [http://github.com/legastero/xmpp-tdg/blob/master/code/CheshiR/SimpleComponent.py] |
View original code [http://github.com/remko/xmpp-tdg/blob/master/code/CheshiR/SimpleComponent.py]

Example 14-6. (Page 223)

CheshiR IM server component with in-band registration support.

Note

Since the CheshiR examples build on each other, see previous sections for
corrections to code that is not marked as new in the book example.

After applying the changes from Example 14-4 above, the registrable component
implementation should work correctly.

Tip

To see how to implement in-band registration as a SleekXMPP plugin,
see the tutorial tutorial-create-plugin.

View full source [http://github.com/legastero/xmpp-tdg/blob/master/code/CheshiR/RegistrableComponent.py] |
View original code [http://github.com/remko/xmpp-tdg/blob/master/code/CheshiR/RegistrableComponent.py]

Example 14-7. (Page 225)

Extended CheshiR IM server component implementation.

Note

Since the CheshiR examples build on each other, see previous
sections for corrections to code that is not marked as new in the book
example.

While the final code example can look daunting with all of the changes
made, it requires very few modifications to work with the latest version of
SleekXMPP. Most differences are the result of CheshiR’s backend functions
expecting JIDs to be strings so that they can be stripped to bare JIDs. To
resolve these, use the jid attribute of the JID objects. Also,
references to "message" and "jid" attributes need to
be changed to either "body" or "status", and either
"from" or "to" depending on if the object is a message
or presence stanza and which of the JIDs from the stanza is needed.

Updated Code

def handleIncomingXMPPMessage(self, event) :
 message = self.addRecipientToMessage(event["body"], event["to"].jid)
 user = self.backend.getUserFromJID(event["from"].jid)
 self.backend.addMessageFromUser(message, user)

def handleIncomingXMPPPresence(self, event) :
 if event["to"].jid == self.componentDomain :
 user = self.backend.getUserFromJID(event["from"].jid)
 self.backend.addMessageFromUser(event["status"], user)

...

def handleXMPPPresenceSubscription(self, subscription) :
 if subscription["type"] == "subscribe" :
 userJID = subscription["from"].jid
 user = self.backend.getUserFromJID(userJID)
 contactJID = subscription["to"]
 self.xmpp.sendPresenceSubscription(
 pfrom=contactJID, pto=userJID, ptype="subscribed", pnick=user)
 self.sendPresenceOfContactToUser(contactJID=contactJID, userJID=userJID)
 if contactJID == self.componentDomain :
 self.sendAllContactSubscriptionRequestsToUser(userJID)

View full source [http://github.com/legastero/xmpp-tdg/blob/master/code/CheshiR/Component.py] |
View original code [http://github.com/remko/xmpp-tdg/blob/master/code/CheshiR/Component.py]

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

How to Work with Stanza Objects

Defining Stanza Interfaces

Creating Stanza Plugins

Creating a Stanza Extension

Overriding a Parent Stanza

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Creating a SleekXMPP Plugin

One of the goals of SleekXMPP is to provide support for every draft or final
XMPP extension (XEP [http://xmpp.org/extensions/]). To do this, SleekXMPP has a
plugin mechanism for adding the functionalities required by each XEP. But even
though plugins were made to quickly implement and prototype the official XMPP
extensions, there is no reason you can’t create your own plugin to implement
your own custom XMPP-based protocol.

This guide will help walk you through the steps to
implement a rudimentary version of XEP-0077 In-band
Registration [http://xmpp.org/extensions/xep-0077.html]. In-band registration
was implemented in example 14-6 (page 223) of XMPP: The Definitive
Guide [http://oreilly.com/catalog/9780596521271] because there was no SleekXMPP
plugin for XEP-0077 at the time of writing. We will partially fix that issue
here by turning the example implementation from XMPP: The Definitive Guide
into a plugin. Again, note that this will not a complete implementation, and a
different, more robust, official plugin for XEP-0077 may be added to SleekXMPP
in the future.

Note

The example plugin created in this guide is for the server side of the
registration process only. It will NOT be able to register new accounts
on an XMPP server.

First Steps

Every plugin inherits from the class base_plugin,
and must include a plugin_init method. While the
plugins distributed with SleekXMPP must be placed in the plugins directory
sleekxmpp/plugins to be loaded, custom plugins may be loaded from any
module. To do so, use the following form when registering the plugin:

self.register_plugin('myplugin', module=mod_containing_my_plugin)

The plugin name must be the same as the plugin’s class name.

Now, we can open our favorite text editors and create xep_0077.py in
SleekXMPP/sleekxmpp/plugins. We want to do some basic house-keeping and
declare the name and description of the XEP we are implementing. If you
are creating your own custom plugin, you don’t need to include the xep
attribute.

"""
Creating a SleekXMPP Plugin

This is a minimal implementation of XEP-0077 to serve
as a tutorial for creating SleekXMPP plugins.
"""

from sleekxmpp.plugins.base import base_plugin

class xep_0077(base_plugin):
 """
 XEP-0077 In-Band Registration
 """

 def plugin_init(self):
 self.description = "In-Band Registration"
 self.xep = "0077"

Now that we have a basic plugin, we need to edit
sleekxmpp/plugins/__init__.py to include our new plugin by adding
'xep_0077' to the __all__ declaration.

Interacting with Other Plugins

In-band registration is a feature that should be advertised through Service
Discovery [http://xmpp.org/extensions/xep-0030.html]. To do that, we tell the
xep_0030 plugin to add the "jabber:iq:register" feature. We put this
call in a method named post_init which will be called once the plugin has
been loaded; by doing so we advertise that we can do registrations only after we
finish activating the plugin.

The post_init method needs to call base_plugin.post_init(self)
which will mark that post_init has been called for the plugin. Once the
SleekXMPP object begins processing, post_init will be called on any plugins
that have not already run post_init. This allows you to register plugins and
their dependencies without needing to worry about the order in which you do so.

Note: by adding this call we have introduced a dependency on the XEP-0030
plugin. Be sure to register 'xep_0030' as well as 'xep_0077'. SleekXMPP
does not automatically load plugin dependencies for you.

def post_init(self):
 base_plugin.post_init(self)
 self.xmpp['xep_0030'].add_feature("jabber:iq:register")

Creating Custom Stanza Objects

Now, the IQ stanzas needed to implement our version of XEP-0077 are not very
complex, and we could just interact with the XML objects directly just like
in the XMPP: The Definitive Guide example. However, creating custom stanza
objects is good practice.

We will create a new Registration stanza. Following the XMPP: The
Definitive Guide example, we will add support for a username and password
field. We also need two flags: registered and remove. The registered
flag is sent when an already registered user attempts to register, along with
their registration data. The remove flag is a request to unregister a user’s
account.

Adding additional fields specified in
XEP-0077 [http://xmpp.org/extensions/xep-0077.html#registrar-formtypes-register]
will not be difficult and is left as an exercise for the reader.

Our Registration class needs to start with a few descriptions of its
behaviour:

	
	namespace

	The namespace our stanza object lives in. In this case,
"jabber:iq:register".

	
	name

	The name of the root XML element. In this case, the query element.

	
	plugin_attrib

	The name to access this type of stanza. In particular, given a
registration stanza, the Registration object can be found using:
iq_object['register'].

	
	interfaces

	A list of dictionary-like keys that can be used with the stanza object.
When using "key", if there exists a method of the form getKey,
setKey, or``delKey`` (depending on context) then the result of calling
that method will be returned. Otherwise, the value of the attribute key
of the main stanza element is returned if one exists.

Note: The accessor methods currently use title case, and not camel case.
Thus if you need to access an item named "methodName" you will need to
use getMethodname. This naming convention might change to full camel
case in a future version of SleekXMPP.

	
	sub_interfaces

	A subset of interfaces, but these keys map to the text of any
subelements that are direct children of the main stanza element. Thus,
referencing iq_object['register']['username'] will either execute
getUsername or return the value in the username element of the
query.

If you need to access an element, say elem, that is not a direct child
of the main stanza element, you will need to add getElem, setElem,
and delElem. See the note above about naming conventions.

from sleekxmpp.xmlstream import ElementBase, ET, JID, register_stanza_plugin
from sleekxmpp import Iq

class Registration(ElementBase):
 namespace = 'jabber:iq:register'
 name = 'query'
 plugin_attrib = 'register'
 interfaces = set(('username', 'password', 'registered', 'remove'))
 sub_interfaces = interfaces

 def getRegistered(self):
 present = self.xml.find('{%s}registered' % self.namespace)
 return present is not None

 def getRemove(self):
 present = self.xml.find('{%s}remove' % self.namespace)
 return present is not None

 def setRegistered(self, registered):
 if registered:
 self.addField('registered')
 else:
 del self['registered']

 def setRemove(self, remove):
 if remove:
 self.addField('remove')
 else:
 del self['remove']

 def addField(self, name):
 itemXML = ET.Element('{%s}%s' % (self.namespace, name))
 self.xml.append(itemXML)

Setting a sub_interface attribute to "" will remove that subelement.
Since we want to include empty registration fields in our form, we need the
addField method to add the empty elements.

Since the registered and remove elements are just flags, we need to add
custom logic to enforce the binary behavior.

Extracting Stanzas from the XML Stream

Now that we have a custom stanza object, we need to be able to detect when we
receive one. To do this, we register a stream handler that will pattern match
stanzas off of the XML stream against our stanza object’s element name and
namespace. To do so, we need to create a Callback object which contains
an XML fragment that can identify our stanza type. We can add this handler
registration to our plugin_init method.

Also, we need to associate our Registration class with IQ stanzas;
that requires the use of the register_stanza_plugin function (in
sleekxmpp.xmlstream.stanzabase) which takes the class of a parent stanza
type followed by the substanza type. In our case, the parent stanza is an IQ
stanza, and the substanza is our registration query.

The __handleRegistration method referenced in the callback will be our
handler function to process registration requests.

def plugin_init(self):
 self.description = "In-Band Registration"
 self.xep = "0077"

 self.xmpp.register_handler(
 Callback('In-Band Registration',
 MatchXPath('{%s}iq/{jabber:iq:register}query' % self.xmpp.default_ns),
 self.__handleRegistration))
 register_stanza_plugin(Iq, Registration)

Handling Incoming Stanzas and Triggering Events

There are six situations that we need to handle to finish our implementation of
XEP-0077.

Registration Form Request from a New User:

<iq type="result">
 <query xmlns="jabber:iq:register">
 <username />
 <password />
 </query>
</iq>

Registration Form Request from an Existing User:

<iq type="result">
 <query xmlns="jabber:iq:register">
 <registered />
 <username>Foo</username>
 <password>hunter2</password>
 </query>
</iq>

Unregister Account:

<iq type="result">
 <query xmlns="jabber:iq:register" />
</iq>

Incomplete Registration:

<iq type="error">
 <query xmlns="jabber:iq:register">
 <username>Foo</username>
 </query>
 <error code="406" type="modify">
 <not-acceptable xmlns="urn:ietf:params:xml:ns:xmpp-stanzas" />
 </error>
</iq>

Conflicting Registrations:

<iq type="error">
 <query xmlns="jabber:iq:register">
 <username>Foo</username>
 <password>hunter2</password>
 </query>
 <error code="409" type="cancel">
 <conflict xmlns="urn:ietf:params:xml:ns:xmpp-stanzas" />
 </error>
</iq>

Successful Registration:

<iq type="result">
 <query xmlns="jabber:iq:register" />
</iq>

Cases 1 and 2: Registration Requests

Responding to registration requests depends on if the requesting user already
has an account. If there is an account, the response should include the
registered flag and the user’s current registration information. Otherwise,
we just send the fields for our registration form.

We will handle both cases by creating a sendRegistrationForm method that
will create either an empty of full form depending on if we provide it with
user data. Since we need to know which form fields to include (especially if we
add support for the other fields specified in XEP-0077), we will also create a
method setForm which will take the names of the fields we wish to include.

def plugin_init(self):
 self.description = "In-Band Registration"
 self.xep = "0077"
 self.form_fields = ('username', 'password')
 ... remainder of plugin_init

...

def __handleRegistration(self, iq):
 if iq['type'] == 'get':
 # Registration form requested
 userData = self.backend[iq['from'].bare]
 self.sendRegistrationForm(iq, userData)

def setForm(self, *fields):
 self.form_fields = fields

def sendRegistrationForm(self, iq, userData=None):
 reg = iq['register']
 if userData is None:
 userData = {}
 else:
 reg['registered'] = True

 for field in self.form_fields:
 data = userData.get(field, '')
 if data:
 # Add field with existing data
 reg[field] = data
 else:
 # Add a blank field
 reg.addField(field)

 iq.reply().setPayload(reg.xml)
 iq.send()

Note how we are able to access our Registration stanza object with
iq['register'].

A User Backend

You might have noticed the reference to self.backend, which is an object
that abstracts away storing and retrieving user information. Since it is not
much more than a dictionary, we will leave the implementation details to the
final, full source code example.

Case 3: Unregister an Account

The next simplest case to consider is responding to a request to remove
an account. If we receive a remove flag, we instruct the backend to
remove the user’s account. Since your application may need to know about
when users are registered or unregistered, we trigger an event using
self.xmpp.event('unregister_user', iq). See the component examples below for
how to respond to that event.

def __handleRegistration(self, iq):
 if iq['type'] == 'get':
 # Registration form requested
 userData = self.backend[iq['from'].bare]
 self.sendRegistrationForm(iq, userData)
 elif iq['type'] == 'set':
 # Remove an account
 if iq['register']['remove']:
 self.backend.unregister(iq['from'].bare)
 self.xmpp.event('unregistered_user', iq)
 iq.reply().send()
 return

Case 4: Incomplete Registration

For the next case we need to check the user’s registration to ensure it has all
of the fields we wanted. The simple option that we will use is to loop over the
field names and check each one; however, this means that all fields we send to
the user are required. Adding optional fields is left to the reader.

Since we have received an incomplete form, we need to send an error message back
to the user. We have to send a few different types of errors, so we will also
create a _sendError method that will add the appropriate error element
to the IQ reply.

def __handleRegistration(self, iq):
 if iq['type'] == 'get':
 # Registration form requested
 userData = self.backend[iq['from'].bare]
 self.sendRegistrationForm(iq, userData)
 elif iq['type'] == 'set':
 if iq['register']['remove']:
 # Remove an account
 self.backend.unregister(iq['from'].bare)
 self.xmpp.event('unregistered_user', iq)
 iq.reply().send()
 return

 for field in self.form_fields:
 if not iq['register'][field]:
 # Incomplete Registration
 self._sendError(iq, '406', 'modify', 'not-acceptable'
 "Please fill in all fields.")
 return

...

def _sendError(self, iq, code, error_type, name, text=''):
 iq.reply().setPayload(iq['register'].xml)
 iq.error()
 iq['error']['code'] = code
 iq['error']['type'] = error_type
 iq['error']['condition'] = name
 iq['error']['text'] = text
 iq.send()

Cases 5 and 6: Conflicting and Successful Registration

We are down to the final decision on if we have a successful registration. We
send the user’s data to the backend with the self.backend.register method.
If it returns True, then registration has been successful. Otherwise,
there has been a conflict with usernames and registration has failed. Like
with unregistering an account, we trigger an event indicating that a user has
been registered by using self.xmpp.event('registered_user', iq). See the
component examples below for how to respond to this event.

def __handleRegistration(self, iq):
 if iq['type'] == 'get':
 # Registration form requested
 userData = self.backend[iq['from'].bare]
 self.sendRegistrationForm(iq, userData)
 elif iq['type'] == 'set':
 if iq['register']['remove']:
 # Remove an account
 self.backend.unregister(iq['from'].bare)
 self.xmpp.event('unregistered_user', iq)
 iq.reply().send()
 return

 for field in self.form_fields:
 if not iq['register'][field]:
 # Incomplete Registration
 self._sendError(iq, '406', 'modify', 'not-acceptable',
 "Please fill in all fields.")
 return

 if self.backend.register(iq['from'].bare, iq['register']):
 # Successful registration
 self.xmpp.event('registered_user', iq)
 iq.reply().setPayload(iq['register'].xml)
 iq.send()
 else:
 # Conflicting registration
 self._sendError(iq, '409', 'cancel', 'conflict',
 "That username is already taken.")

Example Component Using the XEP-0077 Plugin

Alright, the moment we’ve been working towards - actually using our plugin to
simplify our other applications. Here is a basic component that simply manages
user registrations and sends the user a welcoming message when they register,
and a farewell message when they delete their account.

Note that we have to register the 'xep_0030' plugin first,
and that we specified the form fields we wish to use with
self.xmpp.plugin['xep_0077'].setForm('username', 'password').

import sleekxmpp.componentxmpp

class Example(sleekxmpp.componentxmpp.ComponentXMPP):

 def __init__(self, jid, password):
 sleekxmpp.componentxmpp.ComponentXMPP.__init__(self, jid, password, 'localhost', 8888)

 self.registerPlugin('xep_0030')
 self.registerPlugin('xep_0077')
 self.plugin['xep_0077'].setForm('username', 'password')

 self.add_event_handler("registered_user", self.reg)
 self.add_event_handler("unregistered_user", self.unreg)

 def reg(self, iq):
 msg = "Welcome! %s" % iq['register']['username']
 self.sendMessage(iq['from'], msg, mfrom=self.fulljid)

 def unreg(self, iq):
 msg = "Bye! %s" % iq['register']['username']
 self.sendMessage(iq['from'], msg, mfrom=self.fulljid)

Congratulations! We now have a basic, functioning implementation of
XEP-0077.

Complete Source Code for XEP-0077 Plugin

Here is a copy of a more complete implementation of the plugin we created, but
with some additional registration fields implemented.

"""
Creating a SleekXMPP Plugin

This is a minimal implementation of XEP-0077 to serve
as a tutorial for creating SleekXMPP plugins.
"""

from sleekxmpp.plugins.base import base_plugin
from sleekxmpp.xmlstream.handler.callback import Callback
from sleekxmpp.xmlstream.matcher.xpath import MatchXPath
from sleekxmpp.xmlstream import ElementBase, ET, JID, register_stanza_plugin
from sleekxmpp import Iq
import copy

class Registration(ElementBase):
 namespace = 'jabber:iq:register'
 name = 'query'
 plugin_attrib = 'register'
 interfaces = set(('username', 'password', 'email', 'nick', 'name',
 'first', 'last', 'address', 'city', 'state', 'zip',
 'phone', 'url', 'date', 'misc', 'text', 'key',
 'registered', 'remove', 'instructions'))
 sub_interfaces = interfaces

 def getRegistered(self):
 present = self.xml.find('{%s}registered' % self.namespace)
 return present is not None

 def getRemove(self):
 present = self.xml.find('{%s}remove' % self.namespace)
 return present is not None

 def setRegistered(self, registered):
 if registered:
 self.addField('registered')
 else:
 del self['registered']

 def setRemove(self, remove):
 if remove:
 self.addField('remove')
 else:
 del self['remove']

 def addField(self, name):
 itemXML = ET.Element('{%s}%s' % (self.namespace, name))
 self.xml.append(itemXML)

class UserStore(object):
 def __init__(self):
 self.users = {}

 def __getitem__(self, jid):
 return self.users.get(jid, None)

 def register(self, jid, registration):
 username = registration['username']

 def filter_usernames(user):
 return user != jid and self.users[user]['username'] == username

 conflicts = filter(filter_usernames, self.users.keys())
 if conflicts:
 return False

 self.users[jid] = registration
 return True

 def unregister(self, jid):
 del self.users[jid]

class xep_0077(base_plugin):
 """
 XEP-0077 In-Band Registration
 """

 def plugin_init(self):
 self.description = "In-Band Registration"
 self.xep = "0077"
 self.form_fields = ('username', 'password')
 self.form_instructions = ""
 self.backend = UserStore()

 self.xmpp.register_handler(
 Callback('In-Band Registration',
 MatchXPath('{%s}iq/{jabber:iq:register}query' % self.xmpp.default_ns),
 self.__handleRegistration))
 register_stanza_plugin(Iq, Registration)

 def post_init(self):
 base_plugin.post_init(self)
 self.xmpp['xep_0030'].add_feature("jabber:iq:register")

 def __handleRegistration(self, iq):
 if iq['type'] == 'get':
 # Registration form requested
 userData = self.backend[iq['from'].bare]
 self.sendRegistrationForm(iq, userData)
 elif iq['type'] == 'set':
 if iq['register']['remove']:
 # Remove an account
 self.backend.unregister(iq['from'].bare)
 self.xmpp.event('unregistered_user', iq)
 iq.reply().send()
 return

 for field in self.form_fields:
 if not iq['register'][field]:
 # Incomplete Registration
 self._sendError(iq, '406', 'modify', 'not-acceptable',
 "Please fill in all fields.")
 return

 if self.backend.register(iq['from'].bare, iq['register']):
 # Successful registration
 self.xmpp.event('registered_user', iq)
 iq.reply().setPayload(iq['register'].xml)
 iq.send()
 else:
 # Conflicting registration
 self._sendError(iq, '409', 'cancel', 'conflict',
 "That username is already taken.")

 def setForm(self, *fields):
 self.form_fields = fields

 def setInstructions(self, instructions):
 self.form_instructions = instructions

 def sendRegistrationForm(self, iq, userData=None):
 reg = iq['register']
 if userData is None:
 userData = {}
 else:
 reg['registered'] = True

 if self.form_instructions:
 reg['instructions'] = self.form_instructions

 for field in self.form_fields:
 data = userData.get(field, '')
 if data:
 # Add field with existing data
 reg[field] = data
 else:
 # Add a blank field
 reg.addField(field)

 iq.reply().setPayload(reg.xml)
 iq.send()

 def _sendError(self, iq, code, error_type, name, text=''):
 iq.reply().setPayload(iq['register'].xml)
 iq.error()
 iq['error']['code'] = code
 iq['error']['type'] = error_type
 iq['error']['condition'] = name
 iq['error']['text'] = text
 iq.send()

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

How to Use Stream Features

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

How SASL Authentication Works

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Using Stream Handlers and Matchers

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

XEP-0030: Working with Service Discovery

XMPP networks can be composed of many individual clients, components,
and servers. Determining the JIDs for these entities and the various
features they may support is the role of XEP-0030, Service
Discovery [http://xmpp.org/extensions/xep-0030.html], or “disco” for short.

Every XMPP entity may possess what are called nodes. A node is just a name for
some aspect of an XMPP entity. For example, if an XMPP entity provides Ad-Hoc
Commands [http://xmpp.org/extensions/xep-0050.html], then it will have a node
named http://jabber.org/protocol/commands which will contain information
about the commands provided. Other agents using these ad-hoc commands will
interact with the information provided by this node. Note that the node name is
just an identifier; there is no inherent meaning.

Working with service discovery is about creating and querying these nodes.
According to XEP-0030, a node may contain three types of information:
identities, features, and items. (Further, extensible, information types are
defined in XEP-0128 [http://xmpp.org/extensions/xep-0128.html], but they are
not yet implemented by SleekXMPP.) SleekXMPP provides methods to configure each
of these node attributes.

Configuring Service Discovery

The design focus for the XEP-0030 plug-in is handling info and items requests
in a dynamic fashion, allowing for complex policy decisions of who may receive
information and how much, or use alternate backend storage mechanisms for all
of the disco data. To do this, each action that the XEP-0030 plug-in performs
is handed off to what is called a “node handler,” which is just a callback
function. These handlers are arranged in a hierarchy that allows for a single
handler to manage an entire domain of JIDs (say for a component), while allowing
other handler functions to override that global behaviour for certain JIDs, or
even further limited to only certain JID and node combinations.

The Dynamic Handler Hierarchy

	global: (JID is None, node is None)

Handlers assigned at this level for an action (such as add_feature) provide a global default
behaviour when the action is performed.

	jid: (JID assigned, node is None)

At this level, handlers provide a default behaviour for actions affecting any node owned by the
JID in question. This level is most useful for component connections; there is effectively no
difference between this and the global level when using a client connection.

	node: (JID assigned, node assigned)

A handler for this level is responsible for carrying out an action for only one node, and is the
most specific handler type available. These types of handlers will be most useful for “special”
nodes that require special processing different than others provided by the JID, such as using
access control lists, or consolidating data from other nodes.

Default Static Handlers

The XEP-0030 plug-in provides a default set of handlers that work using in-memory
disco stanzas. Each handler simply performs the appropriate lookup or storage
operation using these stanzas without doing any complex operations such as
checking an ACL, etc.

You may find it necessary at some point to revert a particular node or JID to
using the default, static handlers. To do so, use the method make_static().
You may also elect to only convert a given set of actions instead.

Creating a Node Handler

Every node handler receives three arguments: the JID, the node, and a data
parameter that will contain the relevant information for carrying out the
handler’s action, typically a dictionary.

The JID will always have a value, defaulting to xmpp.boundjid.full for
components or xmpp.boundjid.bare for clients. The node value may be None or
a string.

Only handlers for the actions get_info and get_items need to have return
values. For these actions, DiscoInfo or DiscoItems stanzas are exepected as
output. It is also acceptable for handlers for these actions to generate an
XMPPError exception when necessary.

Example Node Handler:

Here is one of the built-in default handlers as an example:

def add_identity(self, jid, node, data):
 """
 Add a new identity to the JID/node combination.

 The data parameter may provide:
 category -- The general category to which the agent belongs.
 itype -- A more specific designation with the category.
 name -- Optional human readable name for this identity.
 lang -- Optional standard xml:lang value.
 """
 self.add_node(jid, node)
 self.nodes[(jid, node)]['info'].add_identity(
 data.get('category', ''),
 data.get('itype', ''),
 data.get('name', None),
 data.get('lang', None))

Adding Identities, Features, and Items

In order to maintain some backwards compatibility, the methods add_identity,
add_feature, and add_item do not follow the method signature pattern of
the other API methods (i.e. jid, node, then other options), but rather retain
the parameter orders from previous plug-in versions.

Adding an Identity

Adding an identity may be done using either the older positional notation, or
with keyword parameters. The example below uses the keyword arguments, but in
the same order as expected using positional arguments.

xmpp['xep_0030'].add_identity(category='client',
 itype='bot',
 name='Sleek',
 node='foo',
 jid=xmpp.boundjid.full,
 lang='no')

The JID and node values determine which handler will be used to perform the
add_identity action.

The lang parameter allows for adding localized versions of identities using
the xml:lang attribute.

Adding a Feature

The position ordering for add_feature() is to include the feature, then
specify the node and then the JID. The JID and node values determine which
handler will be used to perform the add_feature action.

xmpp['xep_0030'].add_feature(feature='jabber:x:data',
 node='foo',
 jid=xmpp.boundjid.full)

Adding an Item

The parameters to add_item() are potentially confusing due to the fact that
adding an item requires two JID and node combinations: the JID and node of the
item itself, and the JID and node that will own the item.

xmpp['xep_0030'].add_item(jid='myitemjid@example.com',
 name='An Item!',
 node='owner_node',
 subnode='item_node',
 ijid=xmpp.boundjid.full)

Note

In this case, the owning JID and node are provided with the
parameters ijid and node.

Peforming Disco Queries

The methods get_info() and get_items() are used to query remote JIDs
and their nodes for disco information. Since these methods are wrappers for
sending Iq stanzas, they also accept all of the parameters of the Iq.send()
method. The get_items() method may also accept the boolean parameter
iterator, which when set to True will return an iterator object using
the XEP-0059 [http://xmpp.org/extensions/xep-0059.html] plug-in.

info = self['xep_0030'].get_info(jid='foo@example.com',
 node='bar',
 ifrom='baz@mycomponent.example.com',
 block=True,
 timeout=30)

items = self['xep_0030'].get_info(jid='foo@example.com',
 node='bar',
 iterator=True)

For more examples on how to use basic disco queries, check the disco_browser.py
example in the examples directory.

Local Queries

In some cases, it may be necessary to query the contents of a node owned by the
client itself, or one of a component’s many JIDs. The same method is used as for
normal queries, with two differences. First, the parameter local=True must
be used. Second, the return value will be a DiscoInfo or DiscoItems stanza, not
a full Iq stanza.

info = self['xep_0030'].get_info(node='foo', local=True)
items = self['xep_0030'].get_items(jid='somejid@mycomponent.example.com',
 node='bar',
 local=True)

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

SleekXMPP Architecture

The core of SleekXMPP is contained in four classes: XMLStream,
BaseXMPP, ClientXMPP, and ComponentXMPP. Along side this
stack is a library for working with XML objects that eliminates most
of the tedium of creating/manipulating XML.

[image: _images/arch_layers.png]

The Foundation: XMLStream

XMLStream is a mostly XMPP-agnostic
class whose purpose is to read and write from a bi-directional XML stream.
It also allows for callback functions to execute when XML matching given
patterns is received; these callbacks are also referred to as stream
handlers. The class also provides a basic eventing system
which can be triggered either manually or on a timed schedule.

The Main Threads

XMLStream instances run using at
least three background threads: the send thread, the read thread, and the
scheduler thread. The send thread is in charge of monitoring the send queue
and writing text to the outgoing XML stream. The read thread pulls text off
of the incoming XML stream and stores the results in an event queue. The
scheduler thread is used to emit events after a given period of time.

Additionally, the main event processing loop may be executed in its
own thread if SleekXMPP is being used in the background for another
application.

Short-lived threads may also be spawned as requested for threaded
event handlers.

How XML Text is Turned into Action

To demonstrate the flow of information, let’s consider what happens
when this bit of XML is received (with an assumed namespace of
jabber:client):

<message to="user@example.com" from="friend@example.net">
 <body>Hej!</body>
</message>

	Convert XML strings into objects.

Incoming text is parsed and converted into XML objects (using
ElementTree) which are then wrapped into what are referred to as
Stanza objects. The appropriate class for the
new object is determined using a map of namespaced element names to
classes.

Our incoming XML is thus turned into a Message
stanza object because the namespaced element name
{jabber:client}message is associated with the class
Message.

	Match stanza objects to callbacks.

These objects are then compared against the stored patterns associated
with the registered callback handlers. For each match, a copy of the
stanza object is paired with a reference to the handler and
placed into the event queue.

Our Message object is thus paired with the message stanza handler
BaseXMPP._handle_message() to create the tuple:

('stanza', stanza_obj, handler)

	Process the event queue.

The event queue is the heart of SleekXMPP. Nearly every action that
takes place is first inserted into this queue, whether that be received
stanzas, custom events, or scheduled events.

When the stanza is pulled out of the event queue with an associated
callback, the callback function is executed with the stanza as its only
parameter.

Warning

The callback, aka stream handler, is executed in the main event
processing thread. If the handler blocks, event processing will also
block.

	Raise Custom Events

Since a stream handler shouldn’t block, if extensive processing
for a stanza is required (such as needing to send and receive an
Iq stanza), then custom events must be used.
These events are not explicitly tied to the incoming XML stream and may
be raised at any time. Importantly, these events may be handled in their
own thread.

When the event is raised, a copy of the stanza is created for each
handler registered for the event. In contrast to stream handlers, these functions are referred to as event
handlers. Each stanza/handler pair is then put into the
event queue.

Note

It is possible to skip the event queue and process an event immediately
by using direct=True when raising the event.

The code for BaseXMPP._handle_message() follows this pattern, and
raises a 'message' event:

self.event('message', msg)

The event call then places the message object back into the event queue
paired with an event handler:

('event', 'message', msg_copy1, custom_event_handler_1)
('event', 'message', msg_copy2, custom_evetn_handler_2)

	Process Custom Events

The stanza and event handler are then pulled from the event
queue, and the handler is executed, passing the stanza as its only
argument. If the handler was registered as threaded, then a new thread
will be spawned for it.

Note

Events may be raised without needing stanza objects.
For example, you could use self.event('custom', {'a': 'b'}).
You don’t even need any arguments: self.event('no_parameters').
However, every event handler MUST accept at least one argument.

Finally, after a long trek, our message is handed off to the user’s
custom handler in order to do awesome stuff:

msg.reply()
msg['body'] = "Hey! This is awesome!"
msg.send()

Raising XMPP Awareness: BaseXMPP

While XMLStream attempts to shy away
from anything too XMPP specific, BaseXMPP‘s
sole purpose is to provide foundational support for sending and receiving
XMPP stanzas. This support includes registering the basic message,
presence, and iq stanzas, methods for creating and sending stanzas, and
default handlers for incoming messages and keeping track of presence
notifications.

The plugin system for adding new XEP support is also maintained by
BaseXMPP.

ClientXMPP

ClientXMPP extends
BaseXMPP with additional logic for connecting
to an XMPP server by performing DNS lookups. It also adds support for stream
features such as STARTTLS and SASL.

ComponentXMPP

ComponentXMPP is only a thin layer on top of
BaseXMPP that implements the component handshake
protocol.

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Plugin Architecture

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Event Index

	changed_status

	
	Data: Presence

	Source: RosterItem

Triggered when a presence stanza is received from a JID with a show type
different than the last presence stanza from the same JID.

	changed_subscription

	
	Data: Presence

	Source: BaseXMPP

Triggered whenever a presence stanza with a type of subscribe,
subscribed, unsubscribe, or unsubscribed is received.

Note that if the values xmpp.auto_authorize and xmpp.auto_subscribe
are set to True or False, and not None, then SleekXMPP will
either accept or reject all subscription requests before your event handlers
are called. Set these values to None if you wish to make more complex
subscription decisions.

	chatstate_active

	
	Data:

	Source:

	chatstate_composing

	
	Data:

	Source:

	chatstate_gone

	
	Data:

	Source:

	chatstate_inactive

	
	Data:

	Source:

	chatstate_paused

	
	Data:

	Source:

	connected

	
	Data: {}

	Source: XMLstream

Signal that a connection has been made with the XMPP server, but a session
has not yet been established.

	connection_failed

	
	Data: {} or Failure Stanza if available

	Source: XMLstream

Signal that a connection can not be established after number of attempts.

	disco_info

	
	Data: DiscoInfo

	Source: xep_0030

Triggered whenever a disco#info result stanza is received.

	disco_items

	
	Data: DiscoItems

	Source: xep_0030

Triggered whenever a disco#items result stanza is received.

	disconnected

	
	Data: {}

	Source: XMLstream

Signal that the connection with the XMPP server has been lost.

	entity_time

	
	Data:

	Source:

	failed_auth

	
	Data: {}

	Source: ClientXMPP, xep_0078

Signal that the server has rejected the provided login credentials.

	gmail_messages

	
	Data: Iq

	Source: gmail_notify

Signal that there are unread emails for the Gmail account associated with the current XMPP account.

	gmail_notify

	
	Data: {}

	Source: gmail_notify

Signal that there are unread emails for the Gmail account associated with the current XMPP account.

	got_offline

	
	Data: Presence

	Source: RosterItem

Signal that an unavailable presence stanza has been received from a JID.

	got_online

	
	Data: Presence

	Source: RosterItem

If a presence stanza is received from a JID which was previously marked as
offline, and the presence has a show type of ‘chat‘, ‘dnd‘, ‘away‘,
or ‘xa‘, then this event is triggered as well.

	groupchat_direct_invite

	
	Data: Message

	Source: direct

	groupchat_invite

	
	Data:

	Source:

	groupchat_message

	
	Data: Message

	Source: xep_0045

Triggered whenever a message is received from a multi-user chat room.

	groupchat_presence

	
	Data: Presence

	Source: xep_0045

Triggered whenever a presence stanza is received from a user in a multi-user chat room.

	groupchat_subject

	
	Data: Message

	Source: xep_0045

Triggered whenever the subject of a multi-user chat room is changed, or announced when joining a room.

	killed

	
	Data:

	Source:

	last_activity

	
	Data:

	Source:

	message

	
	Data: Message

	Source: BaseXMPP

Makes the contents of message stanzas available whenever one is received. Be
sure to check the message type in order to handle error messages.

	message_form

	
	Data: Form

	Source: xep_0004

Currently the same as message_xform.

	message_xform

	
	Data: Form

	Source: xep_0004

Triggered whenever a data form is received inside a message.

	muc::[room]::got_offline

	
	Data:

	Source:

	muc::[room]::got_online

	
	Data:

	Source:

	muc::[room]::message

	
	Data:

	Source:

	muc::[room]::presence

	
	Data:

	Source:

	presence_available

	
	Data: Presence

	Source: BaseXMPP

A presence stanza with a type of ‘available‘ is received.

	presence_error

	
	Data: Presence

	Source: BaseXMPP

A presence stanza with a type of ‘error‘ is received.

	presence_form

	
	Data: Form

	Source: xep_0004

This event is present in the XEP-0004 plugin code, but is currently not used.

	presence_probe

	
	Data: Presence

	Source: BaseXMPP

A presence stanza with a type of ‘probe‘ is received.

	presence_subscribe

	
	Data: Presence

	Source: BaseXMPP

A presence stanza with a type of ‘subscribe‘ is received.

	presence_subscribed

	
	Data: Presence

	Source: BaseXMPP

A presence stanza with a type of ‘subscribed‘ is received.

	presence_unavailable

	
	Data: Presence

	Source: BaseXMPP

A presence stanza with a type of ‘unavailable‘ is received.

	presence_unsubscribe

	
	Data: Presence

	Source: BaseXMPP

A presence stanza with a type of ‘unsubscribe‘ is received.

	presence_unsubscribed

	
	Data: Presence

	Source: BaseXMPP

A presence stanza with a type of ‘unsubscribed‘ is received.

	roster_update

	
	Data: Roster

	Source: ClientXMPP

An IQ result containing roster entries is received.

	sent_presence

	
	Data: {}

	Source: Roster

Signal that an initial presence stanza has been written to the XML stream.

	session_end

	
	Data: {}

	Source: XMLstream

Signal that a connection to the XMPP server has been lost and the current
stream session has ended. Currently equivalent to disconnected, but
future implementation of XEP-0198: Stream Management [http://xmpp.org/extensions/xep-0198.html]
will distinguish the two events.

Plugins that maintain session-based state should clear themselves when
this event is fired.

	session_start

	
	Data: {}

	Source: ClientXMPP,
ComponentXMPP
XEP-0078

Signal that a connection to the XMPP server has been made and a session has been established.

	socket_error

	
	Data: Socket exception object

	Source: XMLstream

	stream_error

	
	Data: StreamError

	Source: BaseXMPP

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

ClientXMPP

	
class sleekxmpp.clientxmpp.ClientXMPP(jid, password, plugin_config={}, plugin_whitelist=[], escape_quotes=True, sasl_mech=None, lang=u'en')[source]

	SleekXMPP’s client class. (Use only for good, not for evil.)

Typical use pattern:

xmpp = ClientXMPP('user@server.tld/resource', 'password')
... Register plugins and event handlers ...
xmpp.connect()
xmpp.process(block=False) # block=True will block the current
 # thread. By default, block=False

	Parameters:	
	jid – The JID of the XMPP user account.

	password – The password for the XMPP user account.

	ssl – Deprecated.

	plugin_config – A dictionary of plugin configurations.

	plugin_whitelist – A list of approved plugins that
will be loaded when calling
register_plugins().

	escape_quotes – Deprecated.

	
connect(address=(), reattempt=True, use_tls=True, use_ssl=False)[source]

	Connect to the XMPP server.

When no address is given, a SRV lookup for the server will
be attempted. If that fails, the server user in the JID
will be used.

:param address – A tuple containing the server’s host and port.
:param reattempt: If True, repeat attempting to connect if an

error occurs. Defaults to True.

	Parameters:	
	use_tls – Indicates if TLS should be used for the
connection. Defaults to True.

	use_ssl – Indicates if the older SSL connection method
should be used. Defaults to False.

	
delRosterItem(jid)

	Remove an item from the roster.

This is done by setting its subscription status to 'remove'.

	Parameters:	jid – The JID of the item to remove.

	
del_roster_item(jid)[source]

	Remove an item from the roster.

This is done by setting its subscription status to 'remove'.

	Parameters:	jid – The JID of the item to remove.

	
getRoster(block=True, timeout=None, callback=None)

	Request the roster from the server.

	Parameters:	
	block – Specify if the roster request will block until a
response is received, or a timeout occurs.
Defaults to True.

	timeout –
	The length of time (in seconds) to wait for a response

	before continuing if blocking is used.
Defaults to

response_timeout.

	callback – Optional reference to a stream handler function. Will
be executed when the roster is received.
Implies block=False.

	
get_roster(block=True, timeout=None, callback=None)[source]

	Request the roster from the server.

	Parameters:	
	block – Specify if the roster request will block until a
response is received, or a timeout occurs.
Defaults to True.

	timeout –
	The length of time (in seconds) to wait for a response

	before continuing if blocking is used.
Defaults to

response_timeout.

	callback – Optional reference to a stream handler function. Will
be executed when the roster is received.
Implies block=False.

	
registerFeature(name, handler, restart=False, order=5000)

	Register a stream feature handler.

	Parameters:	
	name – The name of the stream feature.

	handler – The function to execute if the feature is received.

	restart – Indicates if feature processing should halt with
this feature. Defaults to False.

	order – The relative ordering in which the feature should
be negotiated. Lower values will be attempted
earlier when available.

	
register_feature(name, handler, restart=False, order=5000)[source]

	Register a stream feature handler.

	Parameters:	
	name – The name of the stream feature.

	handler – The function to execute if the feature is received.

	restart – Indicates if feature processing should halt with
this feature. Defaults to False.

	order – The relative ordering in which the feature should
be negotiated. Lower values will be attempted
earlier when available.

	
updateRoster(jid, **kwargs)

	Add or change a roster item.

	Parameters:	
	jid – The JID of the entry to modify.

	name – The user’s nickname for this JID.

	subscription – The subscription status. May be one of
'to', 'from', 'both', or
'none'. If set to 'remove',
the entry will be deleted.

	groups – The roster groups that contain this item.

	block – Specify if the roster request will block
until a response is received, or a timeout
occurs. Defaults to True.

	timeout –
	The length of time (in seconds) to wait

	for a response before continuing if blocking
is used. Defaults to

response_timeout.

	callback – Optional reference to a stream handler function.
Will be executed when the roster is received.
Implies block=False.

	
update_roster(jid, **kwargs)[source]

	Add or change a roster item.

	Parameters:	
	jid – The JID of the entry to modify.

	name – The user’s nickname for this JID.

	subscription – The subscription status. May be one of
'to', 'from', 'both', or
'none'. If set to 'remove',
the entry will be deleted.

	groups – The roster groups that contain this item.

	block – Specify if the roster request will block
until a response is received, or a timeout
occurs. Defaults to True.

	timeout –
	The length of time (in seconds) to wait

	for a response before continuing if blocking
is used. Defaults to

response_timeout.

	callback – Optional reference to a stream handler function.
Will be executed when the roster is received.
Implies block=False.

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

ComponentXMPP

	
class sleekxmpp.componentxmpp.ComponentXMPP(jid, secret, host=None, port=None, plugin_config={}, plugin_whitelist=[], use_jc_ns=False)[source]

	SleekXMPP’s basic XMPP server component.

Use only for good, not for evil.

	Parameters:	
	jid – The JID of the component.

	secret – The secret or password for the component.

	host – The server accepting the component.

	port – The port used to connect to the server.

	plugin_config – A dictionary of plugin configurations.

	plugin_whitelist – A list of approved plugins that
will be loaded when calling
register_plugins().

	use_jc_ns – Indicates if the 'jabber:client' namespace
should be used instead of the standard
'jabber:component:accept' namespace.
Defaults to False.

	
connect(host=None, port=None, use_ssl=False, use_tls=False, reattempt=True)[source]

	Connect to the server.

Setting reattempt to True will cause connection attempts to
be made every second until a successful connection is established.

	Parameters:	
	host – The name of the desired server for the connection.
Defaults to server_host.

	port – Port to connect to on the server.
Defauts to server_port.

	use_ssl – Flag indicating if SSL should be used by connecting
directly to a port using SSL.

	use_tls – Flag indicating if TLS should be used, allowing for
connecting to a port without using SSL immediately and
later upgrading the connection.

	reattempt – Flag indicating if the socket should reconnect
after disconnections.

	
incoming_filter(xml)[source]

	Pre-process incoming XML stanzas by converting any
'jabber:client' namespaced elements to the component’s
default namespace.

	Parameters:	xml – The XML stanza to pre-process.

	
start_stream_handler(xml)[source]

	Once the streams are established, attempt to handshake
with the server to be accepted as a component.

	Parameters:	xml – The incoming stream’s root element.

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

BaseXMPP

	
class sleekxmpp.basexmpp.BaseXMPP(jid=u'', default_ns=u'jabber:client')[source]

	The BaseXMPP class adapts the generic XMLStream class for use
with XMPP. It also provides a plugin mechanism to easily extend
and add support for new XMPP features.

	Parameters:	default_ns – Ensure that the correct default XML namespace
is used during initialization.

	
Iq(*args, **kwargs)[source]

	Create an Iq stanza associated with this stream.

	
Message(*args, **kwargs)[source]

	Create a Message stanza associated with this stream.

	
Presence(*args, **kwargs)[source]

	Create a Presence stanza associated with this stream.

	
api = None

	The API registry is a way to process callbacks based on
JID+node combinations. Each callback in the registry is
marked with:

	An API name, e.g. xep_0030

	The name of an action, e.g. get_info

	The JID that will be affected

	The node that will be affected

API handlers with no JID or node will act as global handlers,
while those with a JID and no node will service all nodes
for a JID, and handlers with both a JID and node will be
used only for that specific combination. The handler that
provides the most specificity will be used.

	
auto_authorize[source]

	Auto accept or deny subscription requests.

If True, auto accept subscription requests.
If False, auto deny subscription requests.
If None, don’t automatically respond.

	
auto_subscribe[source]

	Auto send requests for mutual subscriptions.

If True, auto send mutual subscription requests.

	
boundjid = None

	The JabberID (JID) used by this connection,
as set after session binding. This may even be a
different bare JID than what was requested.

	
client_roster = None

	The single roster for the bound JID. This is the
equivalent of:

self.roster[self.boundjid.bare]

	
exception(exception)[source]

	Process any uncaught exceptions, notably
IqError and
IqTimeout exceptions.

	Parameters:	exception – An unhandled Exception object.

	
fulljid[source]

	Attribute accessor for full jid

	
get(key, default)[source]

	Return a plugin given its name, if it has been registered.

	
is_component = None

	The distinction between clients and components can be
important, primarily for choosing how to handle the
'to' and 'from' JIDs of stanzas.

	
jid[source]

	Attribute accessor for bare jid

	
makeIq(id=0, ifrom=None, ito=None, itype=None, iquery=None)

	Create a new Iq stanza with a given Id and from JID.

	Parameters:	
	id – An ideally unique ID value for this stanza thread.
Defaults to 0.

	ifrom – The from JID
to use for this stanza.

	ito – The destination JID
for this stanza.

	itype – The Iq‘s type,
one of: 'get', 'set', 'result',
or 'error'.

	iquery – Optional namespace for adding a query element.

	
makeIqError(id, type=u'cancel', condition=u'feature-not-implemented', text=None, ito=None, ifrom=None, iq=None)

	Create an Iq stanza of type 'error'.

	Parameters:	
	id – An ideally unique ID value. May use new_id().

	type – The type of the error, such as 'cancel' or
'modify'. Defaults to 'cancel'.

	condition – The error condition. Defaults to
'feature-not-implemented'.

	text – A message describing the cause of the error.

	ito – The destination JID
for this stanza.

	ifrom – The 'from' JID
to use for this stanza.

	iq – Optionally use an existing stanza instead
of generating a new one.

	
makeIqGet(queryxmlns=None, ito=None, ifrom=None, iq=None)

	Create an Iq stanza of type 'get'.

Optionally, a query element may be added.

	Parameters:	
	queryxmlns – The namespace of the query to use.

	ito – The destination JID
for this stanza.

	ifrom – The 'from' JID
to use for this stanza.

	iq – Optionally use an existing stanza instead
of generating a new one.

	
makeIqQuery(iq=None, xmlns=u'', ito=None, ifrom=None)

	Create or modify an Iq stanza
to use the given query namespace.

	Parameters:	
	iq – Optionally use an existing stanza instead
of generating a new one.

	xmlns – The query’s namespace.

	ito – The destination JID
for this stanza.

	ifrom – The 'from' JID
to use for this stanza.

	
makeIqResult(id=None, ito=None, ifrom=None, iq=None)

	Create an Iq stanza of type
'result' with the given ID value.

	Parameters:	
	id – An ideally unique ID value. May use new_id().

	ito – The destination JID
for this stanza.

	ifrom – The 'from' JID
to use for this stanza.

	iq – Optionally use an existing stanza instead
of generating a new one.

	
makeIqSet(sub=None, ito=None, ifrom=None, iq=None)

	Create an Iq stanza of type 'set'.

Optionally, a substanza may be given to use as the
stanza’s payload.

	Parameters:	
	sub – Either an
ElementBase
stanza object or an
Element [http://docs.python.org/3.2/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element] XML object
to use as the Iq‘s payload.

	ito – The destination JID
for this stanza.

	ifrom – The 'from' JID
to use for this stanza.

	iq – Optionally use an existing stanza instead
of generating a new one.

	
makeMessage(mto, mbody=None, msubject=None, mtype=None, mhtml=None, mfrom=None, mnick=None)

	Create and initialize a new
Message stanza.

	Parameters:	
	mto – The recipient of the message.

	mbody – The main contents of the message.

	msubject – Optional subject for the message.

	mtype – The message’s type, such as 'chat' or
'groupchat'.

	mhtml – Optional HTML body content in the form of a string.

	mfrom – The sender of the message. if sending from a client,
be aware that some servers require that the full JID
of the sender be used.

	mnick – Optional nickname of the sender.

	
makePresence(pshow=None, pstatus=None, ppriority=None, pto=None, ptype=None, pfrom=None, pnick=None)

	Create and initialize a new
Presence stanza.

	Parameters:	
	pshow – The presence’s show value.

	pstatus – The presence’s status message.

	ppriority – This connection’s priority.

	pto – The recipient of a directed presence.

	ptype – The type of presence, such as 'subscribe'.

	pfrom – The sender of the presence.

	pnick – Optional nickname of the presence’s sender.

	
makeQueryRoster(iq=None)

	Create a roster query element.

	Parameters:	iq – Optionally use an existing stanza instead
of generating a new one.

	
make_iq(id=0, ifrom=None, ito=None, itype=None, iquery=None)[source]

	Create a new Iq stanza with a given Id and from JID.

	Parameters:	
	id – An ideally unique ID value for this stanza thread.
Defaults to 0.

	ifrom – The from JID
to use for this stanza.

	ito – The destination JID
for this stanza.

	itype – The Iq‘s type,
one of: 'get', 'set', 'result',
or 'error'.

	iquery – Optional namespace for adding a query element.

	
make_iq_error(id, type=u'cancel', condition=u'feature-not-implemented', text=None, ito=None, ifrom=None, iq=None)[source]

	Create an Iq stanza of type 'error'.

	Parameters:	
	id – An ideally unique ID value. May use new_id().

	type – The type of the error, such as 'cancel' or
'modify'. Defaults to 'cancel'.

	condition – The error condition. Defaults to
'feature-not-implemented'.

	text – A message describing the cause of the error.

	ito – The destination JID
for this stanza.

	ifrom – The 'from' JID
to use for this stanza.

	iq – Optionally use an existing stanza instead
of generating a new one.

	
make_iq_get(queryxmlns=None, ito=None, ifrom=None, iq=None)[source]

	Create an Iq stanza of type 'get'.

Optionally, a query element may be added.

	Parameters:	
	queryxmlns – The namespace of the query to use.

	ito – The destination JID
for this stanza.

	ifrom – The 'from' JID
to use for this stanza.

	iq – Optionally use an existing stanza instead
of generating a new one.

	
make_iq_query(iq=None, xmlns=u'', ito=None, ifrom=None)[source]

	Create or modify an Iq stanza
to use the given query namespace.

	Parameters:	
	iq – Optionally use an existing stanza instead
of generating a new one.

	xmlns – The query’s namespace.

	ito – The destination JID
for this stanza.

	ifrom – The 'from' JID
to use for this stanza.

	
make_iq_result(id=None, ito=None, ifrom=None, iq=None)[source]

	Create an Iq stanza of type
'result' with the given ID value.

	Parameters:	
	id – An ideally unique ID value. May use new_id().

	ito – The destination JID
for this stanza.

	ifrom – The 'from' JID
to use for this stanza.

	iq – Optionally use an existing stanza instead
of generating a new one.

	
make_iq_set(sub=None, ito=None, ifrom=None, iq=None)[source]

	Create an Iq stanza of type 'set'.

Optionally, a substanza may be given to use as the
stanza’s payload.

	Parameters:	
	sub – Either an
ElementBase
stanza object or an
Element [http://docs.python.org/3.2/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element] XML object
to use as the Iq‘s payload.

	ito – The destination JID
for this stanza.

	ifrom – The 'from' JID
to use for this stanza.

	iq – Optionally use an existing stanza instead
of generating a new one.

	
make_message(mto, mbody=None, msubject=None, mtype=None, mhtml=None, mfrom=None, mnick=None)[source]

	Create and initialize a new
Message stanza.

	Parameters:	
	mto – The recipient of the message.

	mbody – The main contents of the message.

	msubject – Optional subject for the message.

	mtype – The message’s type, such as 'chat' or
'groupchat'.

	mhtml – Optional HTML body content in the form of a string.

	mfrom – The sender of the message. if sending from a client,
be aware that some servers require that the full JID
of the sender be used.

	mnick – Optional nickname of the sender.

	
make_presence(pshow=None, pstatus=None, ppriority=None, pto=None, ptype=None, pfrom=None, pnick=None)[source]

	Create and initialize a new
Presence stanza.

	Parameters:	
	pshow – The presence’s show value.

	pstatus – The presence’s status message.

	ppriority – This connection’s priority.

	pto – The recipient of a directed presence.

	ptype – The type of presence, such as 'subscribe'.

	pfrom – The sender of the presence.

	pnick – Optional nickname of the presence’s sender.

	
make_query_roster(iq=None)[source]

	Create a roster query element.

	Parameters:	iq – Optionally use an existing stanza instead
of generating a new one.

	
max_redirects = None

	The maximum number of consecutive see-other-host
redirections that will be followed before quitting.

	
plugin = None

	A dictionary mapping plugin names to plugins.

	
plugin_config = None

	Configuration options for whitelisted plugins.
If a plugin is registered without any configuration,
and there is an entry here, it will be used.

	
plugin_whitelist = None

	A list of plugins that will be loaded if
register_plugins() is called.

	
process(*args, **kwargs)[source]

	Initialize plugins and begin processing the XML stream.

The number of threads used for processing stream events is determined
by HANDLER_THREADS.

	Parameters:	
	block (bool [http://docs.python.org/3.2/library/functions.html#bool]) – If False, then event dispatcher will run
in a separate thread, allowing for the stream to be
used in the background for another application.
Otherwise, process(block=True) blocks the current
thread. Defaults to False.

	threaded (bool [http://docs.python.org/3.2/library/functions.html#bool]) – DEPRECATED
If True, then event dispatcher will run
in a separate thread, allowing for the stream to be
used in the background for another application.
Defaults to True. This does not mean that no
threads are used at all if threaded=False.

Regardless of these threading options, these threads will
always exist:

	The event queue processor

	The send queue processor

	The scheduler

	
registerPlugin(plugin, pconfig={}, module=None)

	Register and configure a plugin for use in this stream.

	Parameters:	
	plugin – The name of the plugin class. Plugin names must
be unique.

	pconfig – A dictionary of configuration data for the plugin.
Defaults to an empty dictionary.

	module – Optional refence to the module containing the plugin
class if using custom plugins.

	
register_plugin(plugin, pconfig={}, module=None)[source]

	Register and configure a plugin for use in this stream.

	Parameters:	
	plugin – The name of the plugin class. Plugin names must
be unique.

	pconfig – A dictionary of configuration data for the plugin.
Defaults to an empty dictionary.

	module – Optional refence to the module containing the plugin
class if using custom plugins.

	
register_plugins()[source]

	Register and initialize all built-in plugins.

Optionally, the list of plugins loaded may be limited to those
contained in plugin_whitelist.

Plugin configurations stored in plugin_config will be used.

	
requested_jid = None

	The JabberID (JID) requested for this connection.

	
resource[source]

	Attribute accessor for jid resource

	
roster = None

	The main roster object. This roster supports multiple
owner JIDs, as in the case for components. For clients
which only have a single JID, see client_roster.

	
sendMessage(mto, mbody, msubject=None, mtype=None, mhtml=None, mfrom=None, mnick=None)

	Create, initialize, and send a new
Message stanza.

	Parameters:	
	mto – The recipient of the message.

	mbody – The main contents of the message.

	msubject – Optional subject for the message.

	mtype – The message’s type, such as 'chat' or
'groupchat'.

	mhtml – Optional HTML body content in the form of a string.

	mfrom – The sender of the message. if sending from a client,
be aware that some servers require that the full JID
of the sender be used.

	mnick – Optional nickname of the sender.

	
sendPresence(pshow=None, pstatus=None, ppriority=None, pto=None, pfrom=None, ptype=None, pnick=None)

	Create, initialize, and send a new
Presence stanza.

	Parameters:	
	pshow – The presence’s show value.

	pstatus – The presence’s status message.

	ppriority – This connection’s priority.

	pto – The recipient of a directed presence.

	ptype – The type of presence, such as 'subscribe'.

	pfrom – The sender of the presence.

	pnick – Optional nickname of the presence’s sender.

	
sendPresenceSubscription(pto, pfrom=None, ptype=u'subscribe', pnick=None)

	Create, initialize, and send a new
Presence stanza of
type 'subscribe'.

	Parameters:	
	pto – The recipient of a directed presence.

	pfrom – The sender of the presence.

	ptype – The type of presence, such as 'subscribe'.

	pnick – Optional nickname of the presence’s sender.

	
send_message(mto, mbody, msubject=None, mtype=None, mhtml=None, mfrom=None, mnick=None)[source]

	Create, initialize, and send a new
Message stanza.

	Parameters:	
	mto – The recipient of the message.

	mbody – The main contents of the message.

	msubject – Optional subject for the message.

	mtype – The message’s type, such as 'chat' or
'groupchat'.

	mhtml – Optional HTML body content in the form of a string.

	mfrom – The sender of the message. if sending from a client,
be aware that some servers require that the full JID
of the sender be used.

	mnick – Optional nickname of the sender.

	
send_presence(pshow=None, pstatus=None, ppriority=None, pto=None, pfrom=None, ptype=None, pnick=None)[source]

	Create, initialize, and send a new
Presence stanza.

	Parameters:	
	pshow – The presence’s show value.

	pstatus – The presence’s status message.

	ppriority – This connection’s priority.

	pto – The recipient of a directed presence.

	ptype – The type of presence, such as 'subscribe'.

	pfrom – The sender of the presence.

	pnick – Optional nickname of the presence’s sender.

	
send_presence_subscription(pto, pfrom=None, ptype=u'subscribe', pnick=None)[source]

	Create, initialize, and send a new
Presence stanza of
type 'subscribe'.

	Parameters:	
	pto – The recipient of a directed presence.

	pfrom – The sender of the presence.

	ptype – The type of presence, such as 'subscribe'.

	pnick – Optional nickname of the presence’s sender.

	
sentpresence = None

	Flag indicating that the initial presence broadcast has
been sent. Until this happens, some servers may not
behave as expected when sending stanzas.

	
server[source]

	Attribute accessor for jid host

	
set_jid(jid)[source]

	Rip a JID apart and claim it as our own.

	
stanza = None

	A reference to sleekxmpp.stanza to make accessing
stanza classes easier.

	
start_stream_handler(xml)[source]

	Save the stream ID once the streams have been established.

	Parameters:	xml – The incoming stream’s root element.

	
stream_id = None

	An identifier for the stream as given by the server.

	
use_message_ids = None

	Messages may optionally be tagged with ID values. Setting
use_message_ids to True will assign all outgoing
messages an ID. Some plugin features require enabling
this option.

	
use_presence_ids = None

	Presence updates may optionally be tagged with ID values.
Setting use_message_ids to True will assign all
outgoing messages an ID.

	
username[source]

	Attribute accessor for jid usernode

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Exceptions

	
exception sleekxmpp.exceptions.XMPPError(condition='undefined-condition', text='', etype='cancel', extension=None, extension_ns=None, extension_args=None, clear=True)[source]

	A generic exception that may be raised while processing an XMPP stanza
to indicate that an error response stanza should be sent.

The exception method for stanza objects extending
RootStanza will create an error
stanza and initialize any additional substanzas using the extension
information included in the exception.

Meant for use in SleekXMPP plugins and applications using SleekXMPP.

Extension information can be included to add additional XML elements
to the generated error stanza.

	Parameters:	
	condition – The XMPP defined error condition.
Defaults to 'undefined-condition'.

	text – Human readable text describing the error.

	etype – The XMPP error type, such as 'cancel' or 'modify'.
Defaults to 'cancel'.

	extension – Tag name of the extension’s XML content.

	extension_ns – XML namespace of the extensions’ XML content.

	extension_args – Content and attributes for the extension
element. Same as the additional arguments to
the Element [http://docs.python.org/3.2/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element]
constructor.

	clear – Indicates if the stanza’s contents should be
removed before replying with an error.
Defaults to True.

	
exception sleekxmpp.exceptions.IqError(iq)[source]

	An exception raised when an Iq stanza of type ‘error’ is received
after making a blocking send call.

	
iq = None

	The Iq error result stanza.

	
exception sleekxmpp.exceptions.IqTimeout(iq)[source]

	An exception which indicates that an IQ request response has not been
received within the alloted time window.

	
iq = None

	The Iq stanza whose response
did not arrive before the timeout expired.

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Jabber IDs (JID)

	
class sleekxmpp.xmlstream.jid.JID(jid=None, **kwargs)

	A representation of a Jabber ID, or JID.

Each JID may have three components: a user, a domain, and an optional
resource. For example: user@domain/resource

When a resource is not used, the JID is called a bare JID.
The JID is a full JID otherwise.

	JID Properties:

	

	jid:	Alias for full.

	full:	The string value of the full JID.

	bare:	The string value of the bare JID.

	user:	The username portion of the JID.

	username:	Alias for user.

	local:	Alias for user.

	node:	Alias for user.

	domain:	The domain name portion of the JID.

	server:	Alias for domain.

	host:	Alias for domain.

	resource:	The resource portion of the JID.

	Parameters:	
	jid (string [http://docs.python.org/3.2/library/string.html#string]) – A string of the form '[user@]domain[/resource]'.

	local (string [http://docs.python.org/3.2/library/string.html#string]) – Optional. Specify the local, or username, portion
of the JID. If provided, it will override the local
value provided by the jid parameter. The given
local value will also be escaped if necessary.

	domain (string [http://docs.python.org/3.2/library/string.html#string]) – Optional. Specify the domain of the JID. If
provided, it will override the domain given by
the jid parameter.

	resource (string [http://docs.python.org/3.2/library/string.html#string]) – Optional. Specify the resource value of the JID.
If provided, it will override the domain given
by the jid parameter.

	Raises InvalidJID:

		

	
regenerate()

	No-op

Deprecated since version 1.1.10.

	
reset(data)

	Start fresh from a new JID string.

	Parameters:	data (string [http://docs.python.org/3.2/library/string.html#string]) – A string of the form '[user@]domain[/resource]'.

Deprecated since version 1.1.10.

	
unescape()

	Return an unescaped JID object.

Using an unescaped JID is preferred for displaying JIDs
to humans, and they should NOT be used for any other
purposes than for presentation.

	Returns:	UnescapedJID

New in version 1.1.10.

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Stanza Objects

The stanzabase module provides a wrapper for the
standard ElementTree [http://docs.python.org/3.2/library/xml.etree.elementtree.html#xml.etree.ElementTree] module that makes working with XML
less painful. Instead of having to manually move up and down an element
tree and insert subelements and attributes, you can interact with an object
that behaves like a normal dictionary or JSON object, which silently maps
keys to XML attributes and elements behind the scenes.

Overview

The usefulness of this layer grows as the XML you have to work with
becomes nested. The base unit here, ElementBase, can map to a
single XML element, or several depending on how advanced of a mapping
is desired from interface keys to XML structures. For example, a single
ElementBase derived class could easily describe:

<message to="user@example.com" from="friend@example.com">
 <body>Hi!</body>
 <x:extra>
 <x:item>Custom item 1</x:item>
 <x:item>Custom item 2</x:item>
 <x:item>Custom item 3</x:item>
 </x:extra>
</message>

If that chunk of XML were put in the ElementBase instance
msg, we could extract the data from the XML using:

>>> msg['extra']
['Custom item 1', 'Custom item 2', 'Custom item 3']

Provided we set up the handler for the 'extra' interface to load the
<x:item> element content into a list.

The key concept is that given an XML structure that will be repeatedly
used, we can define a set of interfaces which when we read from,
write to, or delete, will automatically manipulate the underlying XML
as needed. In addition, some of these interfaces may in turn reference
child objects which expose interfaces for particularly complex child
elements of the original XML chunk.

See also

Defining Stanza Interfaces.

Because the stanzabase module was developed
as part of an XMPP [http://xmpp.org] library, these chunks of XML are
referred to as stanzas, and in SleekXMPP we refer to a
subclass of ElementBase which defines the interfaces needed for
interacting with a given stanza a stanza object.

To make dealing with more complicated and nested stanzas
or XML chunks easier, stanza objects can be
composed in two ways: as iterable child objects or as plugins. Iterable
child stanzas, or substanzas, are accessible through a special
'substanzas' interface. This option is useful for stanzas which
may contain more than one of the same kind of element. When there is
only one child element, the plugin method is more useful. For plugins,
a parent stanza object delegates one of its XML child elements to the
plugin stanza object. Here is an example:

<iq type="result">
 <query xmlns="http://jabber.org/protocol/disco#info">
 <identity category="client" type="bot" name="SleekXMPP Bot" />
 </query>
</iq>

We can can arrange this stanza into two objects: an outer, wrapper object for
dealing with the <iq /> element and its attributes, and a plugin object to
control the <query /> payload element. If we give the plugin object the
name 'disco_info' (using its ElementBase.plugin_attrib value), then
we can access the plugin as so:

>>> iq['disco_info']
'<query xmlns="http://jabber.org/protocol/disco#info">
 <identity category="client" type="bot" name="SleekXMPP Bot" />
</query>'

We can then drill down through the plugin object’s interfaces as desired:

>>> iq['disco_info']['identities']
[('client', 'bot', 'SleekXMPP Bot')]

Plugins may also add new interfaces to the parent stanza object as if they
had been defined by the parent directly, and can also override the behaviour
of an interface defined by the parent.

See also

	Creating Stanza Plugins

	Creating a Stanza Extension

	Overriding a Parent Stanza

Registering Stanza Plugins

	
sleekxmpp.xmlstream.stanzabase.register_stanza_plugin(stanza, plugin, iterable=False, overrides=False)[source]

	Associate a stanza object as a plugin for another stanza.

>>> from sleekxmpp.xmlstream import register_stanza_plugin
>>> register_stanza_plugin(Iq, CustomStanza)

Plugin stanzas marked as iterable will be included in the list of
substanzas for the parent, using parent['substanzas']. If the
attribute plugin_multi_attrib was defined for the plugin, then
the substanza set can be filtered to only instances of the plugin
class. For example, given a plugin class Foo with
plugin_multi_attrib = 'foos' then:

parent['foos']

would return a collection of all Foo substanzas.

	Parameters:	
	stanza (class) – The class of the parent stanza.

	plugin (class) – The class of the plugin stanza.

	iterable (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Indicates if the plugin stanza should be
included in the parent stanza’s iterable
'substanzas' interface results.

	overrides (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Indicates if the plugin should be allowed
to override the interface handlers for
the parent stanza, based on the plugin’s
overrides field.

New in version 1.0-Beta1: Made register_stanza_plugin the default name. The prior
registerStanzaPlugin function name remains as an alias.

ElementBase

	
class sleekxmpp.xmlstream.stanzabase.ElementBase(xml=None, parent=None)[source]

	The core of SleekXMPP’s stanza XML manipulation and handling is provided
by ElementBase. ElementBase wraps XML cElementTree objects and enables
access to the XML contents through dictionary syntax, similar in style
to the Ruby XMPP library Blather’s stanza implementation.

Stanzas are defined by their name, namespace, and interfaces. For
example, a simplistic Message stanza could be defined as:

>>> class Message(ElementBase):
... name = "message"
... namespace = "jabber:client"
... interfaces = set(('to', 'from', 'type', 'body'))
... sub_interfaces = set(('body',))

The resulting Message stanza’s contents may be accessed as so:

>>> message['to'] = "user@example.com"
>>> message['body'] = "Hi!"
>>> message['body']
"Hi!"
>>> del message['body']
>>> message['body']
""

The interface values map to either custom access methods, stanza
XML attributes, or (if the interface is also in sub_interfaces) the
text contents of a stanza’s subelement.

Custom access methods may be created by adding methods of the
form “getInterface”, “setInterface”, or “delInterface”, where
“Interface” is the titlecase version of the interface name.

Stanzas may be extended through the use of plugins. A plugin
is simply a stanza that has a plugin_attrib value. For example:

>>> class MessagePlugin(ElementBase):
... name = "custom_plugin"
... namespace = "custom"
... interfaces = set(('useful_thing', 'custom'))
... plugin_attrib = "custom"

The plugin stanza class must be associated with its intended
container stanza by using register_stanza_plugin as so:

>>> register_stanza_plugin(Message, MessagePlugin)

The plugin may then be accessed as if it were built-in to the parent
stanza:

>>> message['custom']['useful_thing'] = 'foo'

If a plugin provides an interface that is the same as the plugin’s
plugin_attrib value, then the plugin’s interface may be assigned
directly from the parent stanza, as shown below, but retrieving
information will require all interfaces to be used, as so:

>>> # Same as using message['custom']['custom']
>>> message['custom'] = 'bar'
>>> # Must use all interfaces
>>> message['custom']['custom']
'bar'

If the plugin sets is_extension to True, then both setting
and getting an interface value that is the same as the plugin’s
plugin_attrib value will work, as so:

>>> message['custom'] = 'bar' # Using is_extension=True
>>> message['custom']
'bar'

	Parameters:	
	xml – Initialize the stanza object with an existing XML object.

	parent – Optionally specify a parent stanza object will
contain this substanza.

	
__bool__()[source]

	Stanza objects should be treated as True in boolean contexts.

Python 3.x version.

	
__copy__()[source]

	Return a copy of the stanza object that does not share the same
underlying XML object.

	
__delitem__(attrib)[source]

	Delete the value of a stanza interface using dict-like syntax.

Example:

>>> msg['body'] = "Hi!"
>>> msg['body']
'Hi!'
>>> del msg['body']
>>> msg['body']
''

Stanza interfaces are typically mapped directly to the underlyig XML
object, but can be overridden by the presence of a del_attrib
method (or del_foo where the interface is named 'foo', etc).

The effect of deleting a stanza interface value named foo will be
one of:

	Call del_foo override handler, if it exists.

	Call del_foo, if it exists.

	Call delFoo, if it exists.

	Delete foo element, if 'foo' is in
sub_interfaces.

	Remove foo element if 'foo' is in
bool_interfaces.

	Delete top level XML attribute named foo.

	Remove the foo plugin, if it was loaded.

	Do nothing.

	Parameters:	attrib – The name of the affected stanza interface.

	
__eq__(other)[source]

	Compare the stanza object with another to test for equality.

Stanzas are equal if their interfaces return the same values,
and if they are both instances of ElementBase.

	Parameters:	other (ElementBase) – The stanza object to compare against.

	
__getitem__(attrib)[source]

	Return the value of a stanza interface using dict-like syntax.

Example:

>>> msg['body']
'Message contents'

Stanza interfaces are typically mapped directly to the underlying XML
object, but can be overridden by the presence of a get_attrib
method (or get_foo where the interface is named 'foo', etc).

The search order for interface value retrieval for an interface
named 'foo' is:

	The list of substanzas ('substanzas')

	The result of calling the get_foo override handler.

	The result of calling get_foo.

	The result of calling getFoo.

	The contents of the foo subelement, if foo is listed
in sub_interfaces.

	True or False depending on the existence of a foo
subelement and foo is in bool_interfaces.

	The value of the foo attribute of the XML object.

	The plugin named 'foo'

	An empty string.

	Parameters:	attrib (string [http://docs.python.org/3.2/library/string.html#string]) – The name of the requested stanza interface.

	
__iter__()[source]

	Return an iterator object for the stanza’s substanzas.

The iterator is the stanza object itself. Attempting to use two
iterators on the same stanza at the same time is discouraged.

	
__len__()[source]

	Return the number of iterable substanzas in this stanza.

	
__ne__(other)[source]

	Compare the stanza object with another to test for inequality.

Stanzas are not equal if their interfaces return different values,
or if they are not both instances of ElementBase.

	Parameters:	other (ElementBase) – The stanza object to compare against.

	
__next__()[source]

	Return the next iterable substanza.

	
__nonzero__()[source]

	Stanza objects should be treated as True in boolean contexts.

Python 2.x version.

	
__repr__()[source]

	Use the stanza’s serialized XML as its representation.

	
__setitem__(attrib, value)[source]

	Set the value of a stanza interface using dictionary-like syntax.

Example:

>>> msg['body'] = "Hi!"
>>> msg['body']
'Hi!'

Stanza interfaces are typically mapped directly to the underlying XML
object, but can be overridden by the presence of a set_attrib
method (or set_foo where the interface is named 'foo', etc).

The effect of interface value assignment for an interface
named 'foo' will be one of:

	Delete the interface’s contents if the value is None.

	Call the set_foo override handler, if it exists.

	Call set_foo, if it exists.

	Call setFoo, if it exists.

	Set the text of a foo element, if 'foo' is
in sub_interfaces.

	Add or remove an empty subelement foo
if foo is in bool_interfaces.

	Set the value of a top level XML attribute named foo.

	Attempt to pass the value to a plugin named 'foo' using
the plugin’s 'foo' interface.

	Do nothing.

	Parameters:	
	attrib (string [http://docs.python.org/3.2/library/string.html#string]) – The name of the stanza interface to modify.

	value – The new value of the stanza interface.

	
__str__(top_level_ns=True)[source]

	Return a string serialization of the underlying XML object.

See also

XML Serialization

	Parameters:	top_level_ns (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Display the top-most namespace.
Defaults to True.

	
__weakref__

	list of weak references to the object (if defined)

	
_delAttr(name)

	Remove a top level attribute of the XML object.

	Parameters:	name – The name of the attribute.

	
_delSub(name, all=False, lang=None)

	Remove sub elements that match the given name or XPath.

If the element is in a path, then any parent elements that become
empty after deleting the element may also be deleted if requested
by setting all=True.

	Parameters:	
	name – The name or XPath expression for the element(s) to remove.

	all (bool [http://docs.python.org/3.2/library/functions.html#bool]) – If True, remove all empty elements in the path to the
deleted element. Defaults to False.

	
_del_attr(name)[source]

	Remove a top level attribute of the XML object.

	Parameters:	name – The name of the attribute.

	
_del_sub(name, all=False, lang=None)[source]

	Remove sub elements that match the given name or XPath.

If the element is in a path, then any parent elements that become
empty after deleting the element may also be deleted if requested
by setting all=True.

	Parameters:	
	name – The name or XPath expression for the element(s) to remove.

	all (bool [http://docs.python.org/3.2/library/functions.html#bool]) – If True, remove all empty elements in the path to the
deleted element. Defaults to False.

	
_getAttr(name, default=u'')

	Return the value of a top level attribute of the XML object.

In case the attribute has not been set, a default value can be
returned instead. An empty string is returned if no other default
is supplied.

	Parameters:	
	name – The name of the attribute.

	default – Optional value to return if the attribute has not
been set. An empty string is returned otherwise.

	
_getSubText(name, default=u'', lang=None)

	Return the text contents of a sub element.

In case the element does not exist, or it has no textual content,
a default value can be returned instead. An empty string is returned
if no other default is supplied.

	Parameters:	
	name – The name or XPath expression of the element.

	default – Optional default to return if the element does
not exists. An empty string is returned otherwise.

	
_get_attr(name, default=u'')[source]

	Return the value of a top level attribute of the XML object.

In case the attribute has not been set, a default value can be
returned instead. An empty string is returned if no other default
is supplied.

	Parameters:	
	name – The name of the attribute.

	default – Optional value to return if the attribute has not
been set. An empty string is returned otherwise.

	
_get_stanza_values()[source]

	Return A JSON/dictionary version of the XML content
exposed through the stanza’s interfaces:

>>> msg = Message()
>>> msg.values
{'body': '', 'from': , 'mucnick': '', 'mucroom': '',
'to': , 'type': 'normal', 'id': '', 'subject': ''}

Likewise, assigning to values will change the XML
content:

>>> msg = Message()
>>> msg.values = {'body': 'Hi!', 'to': 'user@example.com'}
>>> msg
'<message to="user@example.com"><body>Hi!</body></message>'

New in version 1.0-Beta1.

	
_get_sub_text(name, default=u'', lang=None)[source]

	Return the text contents of a sub element.

In case the element does not exist, or it has no textual content,
a default value can be returned instead. An empty string is returned
if no other default is supplied.

	Parameters:	
	name – The name or XPath expression of the element.

	default – Optional default to return if the element does
not exists. An empty string is returned otherwise.

	
_setAttr(name, value)

	Set the value of a top level attribute of the XML object.

If the new value is None or an empty string, then the attribute will
be removed.

	Parameters:	
	name – The name of the attribute.

	value – The new value of the attribute, or None or ‘’ to
remove it.

	
_setSubText(name, text=None, keep=False, lang=None)

	Set the text contents of a sub element.

In case the element does not exist, a element will be created,
and its text contents will be set.

If the text is set to an empty string, or None, then the
element will be removed, unless keep is set to True.

	Parameters:	
	name – The name or XPath expression of the element.

	text – The new textual content of the element. If the text
is an empty string or None, the element will be removed
unless the parameter keep is True.

	keep – Indicates if the element should be kept if its text is
removed. Defaults to False.

	
_set_attr(name, value)[source]

	Set the value of a top level attribute of the XML object.

If the new value is None or an empty string, then the attribute will
be removed.

	Parameters:	
	name – The name of the attribute.

	value – The new value of the attribute, or None or ‘’ to
remove it.

	
_set_stanza_values(values)[source]

	Set multiple stanza interface values using a dictionary.

Stanza plugin values may be set using nested dictionaries.

	Parameters:	values – A dictionary mapping stanza interface with values.
Plugin interfaces may accept a nested dictionary that
will be used recursively.

New in version 1.0-Beta1.

	
_set_sub_text(name, text=None, keep=False, lang=None)[source]

	Set the text contents of a sub element.

In case the element does not exist, a element will be created,
and its text contents will be set.

If the text is set to an empty string, or None, then the
element will be removed, unless keep is set to True.

	Parameters:	
	name – The name or XPath expression of the element.

	text – The new textual content of the element. If the text
is an empty string or None, the element will be removed
unless the parameter keep is True.

	keep – Indicates if the element should be kept if its text is
removed. Defaults to False.

	
append(item)[source]

	Append either an XML object or a substanza to this stanza object.

If a substanza object is appended, it will be added to the list
of iterable stanzas.

Allows stanza objects to be used like lists.

	Parameters:	item – Either an XML object or a stanza object to add to
this stanza’s contents.

	
appendxml(xml)[source]

	Append an XML object to the stanza’s XML.

The added XML will not be included in the list of
iterable substanzas.

	Parameters:	xml (XML) – The XML object to add to the stanza.

	
attrib[source]

	Return the stanza object itself.

Older implementations of stanza objects used XML objects directly,
requiring the use of .attrib to access attribute values.

Use of the dictionary syntax with the stanza object itself for
accessing stanza interfaces is preferred.

Deprecated since version 1.0.

	
bool_interfaces = set([])

	A subset of interfaces which maps the presence of
subelements to boolean values. Using this set allows for quickly
checking for the existence of empty subelements like <required />.

New in version 1.1.

	
clear()[source]

	Remove all XML element contents and plugins.

Any attribute values will be preserved.

	
enable(attrib, lang=None)[source]

	Enable and initialize a stanza plugin.

Alias for init_plugin().

	Parameters:	attrib (string [http://docs.python.org/3.2/library/string.html#string]) – The plugin_attrib value of the
plugin to enable.

	
find(xpath)[source]

	Find an XML object in this stanza given an XPath expression.

Exposes ElementTree interface for backwards compatibility.

Note

Matching on attribute values is not supported in Python 2.6
or Python 3.1

	Parameters:	xpath (string [http://docs.python.org/3.2/library/string.html#string]) – An XPath expression matching a single
desired element.

	
findall(xpath)[source]

	Find multiple XML objects in this stanza given an XPath expression.

Exposes ElementTree interface for backwards compatibility.

Note

Matching on attribute values is not supported in Python 2.6
or Python 3.1.

	Parameters:	xpath (string [http://docs.python.org/3.2/library/string.html#string]) – An XPath expression matching multiple
desired elements.

	
get(key, default=None)[source]

	Return the value of a stanza interface.

If the found value is None or an empty string, return the supplied
default value.

Allows stanza objects to be used like dictionaries.

	Parameters:	
	key (string [http://docs.python.org/3.2/library/string.html#string]) – The name of the stanza interface to check.

	default – Value to return if the stanza interface has a value
of None or "". Will default to returning None.

	
getStanzaValues()

	Return A JSON/dictionary version of the XML content
exposed through the stanza’s interfaces:

>>> msg = Message()
>>> msg.values
{'body': '', 'from': , 'mucnick': '', 'mucroom': '',
'to': , 'type': 'normal', 'id': '', 'subject': ''}

Likewise, assigning to values will change the XML
content:

>>> msg = Message()
>>> msg.values = {'body': 'Hi!', 'to': 'user@example.com'}
>>> msg
'<message to="user@example.com"><body>Hi!</body></message>'

New in version 1.0-Beta1.

	
initPlugin(attrib, lang=None, existing_xml=None, reuse=True)

	Enable and initialize a stanza plugin.

	Parameters:	attrib (string [http://docs.python.org/3.2/library/string.html#string]) – The plugin_attrib value of the
plugin to enable.

	
init_plugin(attrib, lang=None, existing_xml=None, reuse=True)[source]

	Enable and initialize a stanza plugin.

	Parameters:	attrib (string [http://docs.python.org/3.2/library/string.html#string]) – The plugin_attrib value of the
plugin to enable.

	
interfaces = set([u'to', u'payload', u'type', u'id', u'from'])

	The set of keys that the stanza provides for accessing and
manipulating the underlying XML object. This set may be augmented
with the plugin_attrib value of any registered
stanza plugins.

	
is_extension = False

	If you need to add a new interface to an existing stanza, you
can create a plugin and set is_extension = True. Be sure
to set the plugin_attrib value to the desired interface
name, and that it is the only interface listed in
interfaces. Requests for the new interface from the
parent stanza will be passed to the plugin directly.

New in version 1.0-Beta5.

	
iterables = None

	A list of child stanzas whose class is included in
plugin_iterables.

	
keys()[source]

	Return the names of all stanza interfaces provided by the
stanza object.

Allows stanza objects to be used like dictionaries.

	
lang_interfaces = set([])

	
New in version 1.1.2.

	
match(xpath)[source]

	Compare a stanza object with an XPath-like expression.

If the XPath matches the contents of the stanza object, the match
is successful.

The XPath expression may include checks for stanza attributes.
For example:

'presence@show=xa@priority=2/status'

Would match a presence stanza whose show value is set to 'xa',
has a priority value of '2', and has a status element.

	Parameters:	xpath (string [http://docs.python.org/3.2/library/string.html#string]) – The XPath expression to check against. It
may be either a string or a list of element
names with attribute checks.

	
name = u'stanza'

	The XML tag name of the element, not including any namespace
prefixes. For example, an ElementBase object for
<message /> would use name = 'message'.

	
namespace = u'jabber:client'

	The XML namespace for the element. Given <foo xmlns="bar" />,
then namespace = "bar" should be used. The default namespace
is jabber:client since this is being used in an XMPP library.

	
next()[source]

	Return the next iterable substanza.

	
overrides = []

	In some cases you may wish to override the behaviour of one of the
parent stanza’s interfaces. The overrides list specifies the
interface name and access method to be overridden. For example,
to override setting the parent’s 'condition' interface you
would use:

overrides = ['set_condition']

Getting and deleting the 'condition' interface would not
be affected.

New in version 1.0-Beta5.

	
parent = None

	A weakref.weakref to the parent stanza, if there is one.
If not, then parent is None.

	
plugin_attrib = u'plugin'

	For ElementBase subclasses which are intended to be used
as plugins, the plugin_attrib value defines the plugin name.
Plugins may be accessed by using the plugin_attrib value as
the interface. An example using plugin_attrib = 'foo':

register_stanza_plugin(Message, FooPlugin)
msg = Message()
msg['foo']['an_interface_from_the_foo_plugin']

	
plugin_attrib_map = {}

	A mapping of the plugin_attrib values of registered
plugins to their respective classes.

	
plugin_iterables = set([])

	The set of stanza classes that can be iterated over using
the ‘substanzas’ interface. Classes are added to this set
when registering a plugin with iterable=True:

register_stanza_plugin(DiscoInfo, DiscoItem, iterable=True)

New in version 1.0-Beta5.

	
plugin_multi_attrib = u''

	For ElementBase subclasses that are intended to be an
iterable group of items, the plugin_multi_attrib value defines
an interface for the parent stanza which returns the entire group
of matching substanzas. So the following are equivalent:

Given stanza class Foo, with plugin_multi_attrib = 'foos'
parent['foos']
filter(isinstance(item, Foo), parent['substanzas'])

	
plugin_overrides = {}

	A map of interface operations to the overriding functions.
For example, after overriding the set operation for
the interface body, plugin_overrides would be:

{'set_body': <some function>}

	
plugin_tag_map = {}

	A mapping of root element tag names (in '{namespace}elementname'
format) to the plugin classes responsible for them.

	
plugins = None

	An ordered dictionary of plugin stanzas, mapped by their
plugin_attrib value.

	
pop(index=0)[source]

	Remove and return the last substanza in the list of
iterable substanzas.

Allows stanza objects to be used like lists.

	Parameters:	index (int [http://docs.python.org/3.2/library/functions.html#int]) – The index of the substanza to remove.

	
setStanzaValues(values)

	Set multiple stanza interface values using a dictionary.

Stanza plugin values may be set using nested dictionaries.

	Parameters:	values – A dictionary mapping stanza interface with values.
Plugin interfaces may accept a nested dictionary that
will be used recursively.

New in version 1.0-Beta1.

	
setup(xml=None)[source]

	Initialize the stanza’s XML contents.

Will return True if XML was generated according to the stanza’s
definition instead of building a stanza object from an existing
XML object.

	Parameters:	xml – An existing XML object to use for the stanza’s content
instead of generating new XML.

	
sub_interfaces = set([])

	A subset of interfaces which maps interfaces to direct
subelements of the underlying XML object. Using this set, the text
of these subelements may be set, retrieved, or removed without
needing to define custom methods.

	
subitem = set([])

	A deprecated version of plugin_iterables that remains
for backward compatibility. It required a parent stanza to
know beforehand what stanza classes would be iterable:

class DiscoItem(ElementBase):
 ...

class DiscoInfo(ElementBase):
 subitem = (DiscoItem,)
 ...

Deprecated since version 1.0-Beta5.

	
tag = None

	The name of the tag for the stanza’s root element. It is the
same as calling tag_name() and is formatted as
'{namespace}elementname'.

	
classmethod tag_name()[source]

	Return the namespaced name of the stanza’s root element.

The format for the tag name is:

'{namespace}elementname'

For example, for the stanza <foo xmlns="bar" />,
stanza.tag_name() would return "{bar}foo".

	
values

	Return A JSON/dictionary version of the XML content
exposed through the stanza’s interfaces:

>>> msg = Message()
>>> msg.values
{'body': '', 'from': , 'mucnick': '', 'mucroom': '',
'to': , 'type': 'normal', 'id': '', 'subject': ''}

Likewise, assigning to values will change the XML
content:

>>> msg = Message()
>>> msg.values = {'body': 'Hi!', 'to': 'user@example.com'}
>>> msg
'<message to="user@example.com"><body>Hi!</body></message>'

New in version 1.0-Beta1.

	
xml = None

	The underlying XML object for the stanza. It is a standard
xml.etree.cElementTree object.

	
xml_ns = u'http://www.w3.org/XML/1998/namespace'

	The default XML namespace: http://www.w3.org/XML/1998/namespace.

StanzaBase

	
class sleekxmpp.xmlstream.stanzabase.StanzaBase(stream=None, xml=None, stype=None, sto=None, sfrom=None, sid=None, parent=None)[source]

	StanzaBase provides the foundation for all other stanza objects used
by SleekXMPP, and defines a basic set of interfaces common to nearly
all stanzas. These interfaces are the 'id', 'type', 'to',
and 'from' attributes. An additional interface, 'payload', is
available to access the XML contents of the stanza. Most stanza objects
will provided more specific interfaces, however.

Stanza Interfaces:

	id:	An optional id value that can be used to associate stanzas

	to:	A JID object representing the recipient’s JID.

	from:	A JID object representing the sender’s JID.
with their replies.

	type:	The type of stanza, typically will be 'normal',
'error', 'get', or 'set', etc.

	payload:	The XML contents of the stanza.

	Parameters:	
	stream (XMLStream) – Optional sleekxmpp.xmlstream.XMLStream
object responsible for sending this stanza.

	xml (XML) – Optional XML contents to initialize stanza values.

	stype (string [http://docs.python.org/3.2/library/string.html#string]) – Optional stanza type value.

	sto – Optional string or sleekxmpp.xmlstream.JID
object of the recipient’s JID.

	sfrom – Optional string or sleekxmpp.xmlstream.JID
object of the sender’s JID.

	sid (string [http://docs.python.org/3.2/library/string.html#string]) – Optional ID value for the stanza.

	parent – Optionally specify a parent stanza object will
contain this substanza.

	
delPayload()

	Remove the XML contents of the stanza.

	
del_payload()[source]

	Remove the XML contents of the stanza.

	
error()[source]

	Set the stanza’s type to 'error'.

	
exception(e)[source]

	Handle exceptions raised during stanza processing.

Meant to be overridden.

	
getFrom()

	Return the value of the stanza’s 'from' attribute.

	
getPayload()

	Return a list of XML objects contained in the stanza.

	
getTo()

	Return the value of the stanza’s 'to' attribute.

	
get_from()[source]

	Return the value of the stanza’s 'from' attribute.

	
get_payload()[source]

	Return a list of XML objects contained in the stanza.

	
get_to()[source]

	Return the value of the stanza’s 'to' attribute.

	
interfaces = set([u'to', u'payload', u'type', u'id', u'from'])

	There is a small set of attributes which apply to all XMPP stanzas:
the stanza type, the to and from JIDs, the stanza ID, and, especially
in the case of an Iq stanza, a payload.

	
namespace = u'jabber:client'

	The default XMPP client namespace

	
reply(clear=True)[source]

	Prepare the stanza for sending a reply.

Swaps the 'from' and 'to' attributes.

If clear=True, then also remove the stanza’s
contents to make room for the reply content.

For client streams, the 'from' attribute is removed.

	Parameters:	clear (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Indicates if the stanza’s contents should be
removed. Defaults to True.

	
send(now=False)[source]

	Queue the stanza to be sent on the XML stream.

	Parameters:	now (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Indicates if the queue should be skipped and the
stanza sent immediately. Useful for stream
initialization. Defaults to False.

	
setFrom(value)

	Set the ‘from’ attribute of the stanza.

	Arguments:

	from – A string or JID object representing the sender’s JID.

	
setPayload(value)

	Add XML content to the stanza.

	Parameters:	value – Either an XML or a stanza object, or a list
of XML or stanza objects.

	
setTo(value)

	Set the 'to' attribute of the stanza.

	Parameters:	value – A string or sleekxmpp.xmlstream.JID object
representing the recipient’s JID.

	
setType(value)

	Set the stanza’s 'type' attribute.

Only type values contained in types are accepted.

	Parameters:	value (string [http://docs.python.org/3.2/library/string.html#string]) – One of the values contained in types

	
set_from(value)[source]

	Set the ‘from’ attribute of the stanza.

	Arguments:

	from – A string or JID object representing the sender’s JID.

	
set_payload(value)[source]

	Add XML content to the stanza.

	Parameters:	value – Either an XML or a stanza object, or a list
of XML or stanza objects.

	
set_to(value)[source]

	Set the 'to' attribute of the stanza.

	Parameters:	value – A string or sleekxmpp.xmlstream.JID object
representing the recipient’s JID.

	
set_type(value)[source]

	Set the stanza’s 'type' attribute.

Only type values contained in types are accepted.

	Parameters:	value (string [http://docs.python.org/3.2/library/string.html#string]) – One of the values contained in types

	
types = set([u'set', u'unavailable', u'normal', u'get', u'chat', u'error', None])

	A basic set of allowed values for the 'type' interface.

	
unhandled()[source]

	Called if no handlers have been registered to process this stanza.

Meant to be overridden.

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Stanza Handlers

The Basic Handler

	
class sleekxmpp.xmlstream.handler.base.BaseHandler(name, matcher, stream=None)[source]

	Base class for stream handlers. Stream handlers are matched with
incoming stanzas so that the stanza may be processed in some way.
Stanzas may be matched with multiple handlers.

Handler execution may take place in two phases: during the incoming
stream processing, and in the main event loop. The prerun()
method is executed in the first case, and run() is called
during the second.

	Parameters:	
	name (string [http://docs.python.org/3.2/library/string.html#string]) – The name of the handler.

	matcher – A MatcherBase
derived object that will be used to determine if a
stanza should be accepted by this handler.

	stream – The XMLStream
instance that the handle will respond to.

	
checkDelete()

	Check if the handler should be removed from the list
of stream handlers.

	
check_delete()[source]

	Check if the handler should be removed from the list
of stream handlers.

	
match(xml)[source]

	Compare a stanza or XML object with the handler’s matcher.

	Parameters:	xml – An XML or
ElementBase object

	
name = None

	The name of the handler

	
prerun(payload)[source]

	Prepare the handler for execution while the XML
stream is being processed.

	Parameters:	payload – A ElementBase
object.

	
run(payload)[source]

	Execute the handler after XML stream processing and during the
main event loop.

	Parameters:	payload – A ElementBase
object.

	
stream = None

	The XML stream this handler is assigned to

Callback

	
class sleekxmpp.xmlstream.handler.callback.Callback(name, matcher, pointer, thread=False, once=False, instream=False, stream=None)[source]

	The Callback handler will execute a callback function with
matched stanzas.

The handler may execute the callback either during stream
processing or during the main event loop.

Callback functions are all executed in the same thread, so be aware if
you are executing functions that will block for extended periods of
time. Typically, you should signal your own events using the SleekXMPP
object’s event()
method to pass the stanza off to a threaded event handler for further
processing.

	Parameters:	
	name (string [http://docs.python.org/3.2/library/string.html#string]) – The name of the handler.

	matcher – A MatcherBase
derived object for matching stanza objects.

	pointer – The function to execute during callback.

	thread (bool [http://docs.python.org/3.2/library/functions.html#bool]) – DEPRECATED. Remains only for
backwards compatibility.

	once (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Indicates if the handler should be used only
once. Defaults to False.

	instream (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Indicates if the callback should be executed
during stream processing instead of in the
main event loop.

	stream – The XMLStream
instance this handler should monitor.

	
prerun(payload)[source]

	Execute the callback during stream processing, if
the callback was created with instream=True.

	Parameters:	payload – The matched
ElementBase object.

	
run(payload, instream=False)[source]

	Execute the callback function with the matched stanza payload.

	Parameters:	
	payload – The matched
ElementBase object.

	instream (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Force the handler to execute during stream
processing. This should only be used by
prerun(). Defaults to False.

Waiter

	
class sleekxmpp.xmlstream.handler.waiter.Waiter(name, matcher, stream=None)[source]

	The Waiter handler allows an event handler to block until a
particular stanza has been received. The handler will either be
given the matched stanza, or False if the waiter has timed out.

	Parameters:	
	name (string [http://docs.python.org/3.2/library/string.html#string]) – The name of the handler.

	matcher – A MatcherBase
derived object for matching stanza objects.

	stream – The XMLStream
instance this handler should monitor.

	
check_delete()[source]

	Always remove waiters after use.

	
prerun(payload)[source]

	Store the matched stanza when received during processing.

	Parameters:	payload – The matched
ElementBase object.

	
run(payload)[source]

	Do not process this handler during the main event loop.

	
wait(timeout=None)[source]

	Block an event handler while waiting for a stanza to arrive.

Be aware that this will impact performance if called from a
non-threaded event handler.

Will return either the received stanza, or False if the
waiter timed out.

	Parameters:	timeout (int [http://docs.python.org/3.2/library/functions.html#int]) – The number of seconds to wait for the stanza
to arrive. Defaults to the the stream’s
response_timeout
value.

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Stanza Matchers

The Basic Matcher

	
class sleekxmpp.xmlstream.matcher.base.MatcherBase(criteria)[source]

	Base class for stanza matchers. Stanza matchers are used to pick
stanzas out of the XML stream and pass them to the appropriate
stream handlers.

	Parameters:	criteria – Object to compare some aspect of a stanza against.

	
match(xml)[source]

	Check if a stanza matches the stored criteria.

Meant to be overridden.

ID Matching

	
class sleekxmpp.xmlstream.matcher.id.MatcherId(criteria)[source]

	The ID matcher selects stanzas that have the same stanza ‘id’
interface value as the desired ID.

	
match(xml)[source]

	Compare the given stanza’s 'id' attribute to the stored
id value.

	Parameters:	xml – The ElementBase
stanza to compare against.

Stanza Path Matching

	
class sleekxmpp.xmlstream.matcher.stanzapath.StanzaPath(criteria)[source]

	The StanzaPath matcher selects stanzas that match a given “stanza path”,
which is similar to a normal XPath except that it uses the interfaces and
plugins of the stanza instead of the actual, underlying XML.

	Parameters:	criteria – Object to compare some aspect of a stanza against.

	
match(stanza)[source]

	Compare a stanza against a “stanza path”. A stanza path is similar to
an XPath expression, but uses the stanza’s interfaces and plugins
instead of the underlying XML. See the documentation for the stanza
match() method
for more information.

	Parameters:	stanza – The ElementBase
stanza to compare against.

XPath

	
class sleekxmpp.xmlstream.matcher.xpath.MatchXPath(criteria)[source]

	The XPath matcher selects stanzas whose XML contents matches a given
XPath expression.

Warning

Using this matcher may not produce expected behavior when using
attribute selectors. For Python 2.6 and 3.1, the ElementTree
find() [http://docs.python.org/3.2/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element.find] method does
not support the use of attribute selectors. If you need to
support Python 2.6 or 3.1, it might be more useful to use a
StanzaPath matcher.

If the value of IGNORE_NS is set to True, then XPath
expressions will be matched without using namespaces.

	
match(xml)[source]

	Compare a stanza’s XML contents to an XPath expression.

If the value of IGNORE_NS is set to True, then XPath
expressions will be matched without using namespaces.

Warning

In Python 2.6 and 3.1 the ElementTree
find() [http://docs.python.org/3.2/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element.find] method does not
support attribute selectors in the XPath expression.

	Parameters:	xml – The ElementBase
stanza to compare against.

XMLMask

	
class sleekxmpp.xmlstream.matcher.xmlmask.MatchXMLMask(criteria, default_ns='jabber:client')[source]

	The XMLMask matcher selects stanzas whose XML matches a given
XML pattern, or mask. For example, message stanzas with body elements
could be matched using the mask:

<message xmlns="jabber:client"><body /></message>

Use of XMLMask is discouraged, and
MatchXPath or
StanzaPath
should be used instead.

	Parameters:	criteria – Either an Element [http://docs.python.org/3.2/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element] XML
object or XML string to use as a mask.

	
match(xml)[source]

	Compare a stanza object or XML object against the stored XML mask.

Overrides MatcherBase.match.

	Parameters:	xml – The stanza object or XML object to compare against.

	
setDefaultNS(ns)[source]

	Set the default namespace to use during comparisons.

	Parameters:	ns – The new namespace to use as the default.

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

XML Stream

	
exception sleekxmpp.xmlstream.xmlstream.RestartStream[source]

	Exception to restart stream processing, including
resending the stream header.

	
class sleekxmpp.xmlstream.xmlstream.XMLStream(socket=None, host=u'', port=0)[source]

	An XML stream connection manager and event dispatcher.

The XMLStream class abstracts away the issues of establishing a
connection with a server and sending and receiving XML “stanzas”.
A stanza is a complete XML element that is a direct child of a root
document element. Two streams are used, one for each communication
direction, over the same socket. Once the connection is closed, both
streams should be complete and valid XML documents.

	Three types of events are provided to manage the stream:

	

	Stream:	Triggered based on received stanzas, similar in concept
to events in a SAX XML parser.

	Custom:	Triggered manually.

	Scheduled:	Triggered based on time delays.

Typically, stanzas are first processed by a stream event handler which
will then trigger custom events to continue further processing,
especially since custom event handlers may run in individual threads.

	Parameters:	
	socket – Use an existing socket for the stream. Defaults to
None to generate a new socket.

	host (string [http://docs.python.org/3.2/library/string.html#string]) – The name of the target server.

	port (int [http://docs.python.org/3.2/library/functions.html#int]) – The port to use for the connection. Defaults to 0.

	
add_event_handler(name, pointer, threaded=False, disposable=False)[source]

	Add a custom event handler that will be executed whenever
its event is manually triggered.

	Parameters:	
	name – The name of the event that will trigger
this handler.

	pointer – The function to execute.

	threaded – If set to True, the handler will execute
in its own thread. Defaults to False.

	disposable – If set to True, the handler will be
discarded after one use. Defaults to False.

	
add_filter(mode, handler, order=None)[source]

	Add a filter for incoming or outgoing stanzas.

These filters are applied before incoming stanzas are
passed to any handlers, and before outgoing stanzas
are put in the send queue.

Each filter must accept a single stanza, and return
either a stanza or None. If the filter returns
None, then the stanza will be dropped from being
processed for events or from being sent.

	Parameters:	
	mode – One of 'in' or 'out'.

	handler – The filter function.

	order (int [http://docs.python.org/3.2/library/functions.html#int]) – The position to insert the filter in
the list of active filters.

	
add_handler(mask, pointer, name=None, disposable=False, threaded=False, filter=False, instream=False)[source]

	A shortcut method for registering a handler using XML masks.

The use of register_handler() is preferred.

	Parameters:	
	mask – An XML snippet matching the structure of the
stanzas that will be passed to this handler.

	pointer – The handler function itself.

	disposable – Indicates if the handler should be discarded
after one use.

	threaded – DEPRECATED.
Remains for backwards compatibility.

	filter – DEPRECATED.
Remains for backwards compatibility.

	instream – Indicates if the handler should execute during
stream processing and not during normal event
processing.

	Parm name:	A unique name for the handler. A name will
be generated if one is not provided.

	
address = None

	The desired, or actual, address of the connected server.

	
auto_reconnect = None

	The auto_reconnnect setting controls whether or not
the stream will be restarted in the event of an error.

	
ca_certs = None

	Path to a file containing certificates for verifying the
server SSL certificate. A non-None value will trigger
certificate checking.

Note

On Mac OS X, certificates in the system keyring will
be consulted, even if they are not in the provided file.

	
certfile = None

	Path to a file containing a client certificate to use for
authenticating via SASL EXTERNAL. If set, there must also
be a corresponding :attr:keyfile value.

	
configure_dns(resolver, domain=None, port=None)[source]

	Configure and set options for a Resolver
instance, and other DNS related tasks. For example, you
can also check getaddrinfo() to see
if you need to call out to libresolv.so.2 to
run res_init().

Meant to be overridden.

	Parameters:	
	resolver – A Resolver instance
or None if dnspython is not installed.

	domain – The initial domain under consideration.

	port – The initial port under consideration.

	
configure_socket()[source]

	Set timeout and other options for self.socket.

Meant to be overridden.

	
connect(host=u'', port=0, use_ssl=False, use_tls=True, reattempt=True)[source]

	Create a new socket and connect to the server.

Setting reattempt to True will cause connection
attempts to be made with an exponential backoff delay (max of
reconnect_max_delay which defaults to 10 minute) until a
successful connection is established.

	Parameters:	
	host – The name of the desired server for the connection.

	port – Port to connect to on the server.

	use_ssl – Flag indicating if SSL should be used by connecting
directly to a port using SSL.

	use_tls – Flag indicating if TLS should be used, allowing for
connecting to a port without using SSL immediately and
later upgrading the connection.

	reattempt – Flag indicating if the socket should reconnect
after disconnections.

	
default_domain = None

	The domain to try when querying DNS records.

	
default_ns = None

	The default namespace of the stream content, not of the
stream wrapper itself.

	
default_port = None

	The default port to return when querying DNS records.

	
del_event_handler(name, pointer)[source]

	Remove a function as a handler for an event.

	Parameters:	
	name – The name of the event.

	pointer – The function to remove as a handler.

	
del_filter(mode, handler)[source]

	Remove an incoming or outgoing filter.

	
disconnect(reconnect=False, wait=None, send_close=True)[source]

	Terminate processing and close the XML streams.

Optionally, the connection may be reconnected and
resume processing afterwards.

If the disconnect should take place after all items
in the send queue have been sent, use wait=True.

Warning

If you are constantly adding items to the queue
such that it is never empty, then the disconnect will
not occur and the call will continue to block.

	Parameters:	
	reconnect – Flag indicating if the connection
and processing should be restarted.
Defaults to False.

	wait – Flag indicating if the send queue should
be emptied before disconnecting, overriding
disconnect_wait.

	send_close – Flag indicating if the stream footer
should be sent before terminating the
connection. Setting this to False
prevents error loops when trying to
disconnect after a socket error.

	
disconnect_wait = None

	The disconnect_wait setting is the default value
for controlling if the system waits for the send queue to
empty before ending the stream. This may be overridden by
passing wait=True or wait=False to disconnect().
The default disconnect_wait value is False.

	
dns_answers = None

	A list of DNS results that have not yet been tried.

	
dns_service = None

	The service name to check with DNS SRV records. For
example, setting this to 'xmpp-client' would query the
_xmpp-client._tcp service.

	
end_session_on_disconnect = None

	Flag for controlling if the session can be considered ended
if the connection is terminated.

	
event(name, data={}, direct=False)[source]

	Manually trigger a custom event.

	Parameters:	
	name – The name of the event to trigger.

	data – Data that will be passed to each event handler.
Defaults to an empty dictionary, but is usually
a stanza object.

	direct – Runs the event directly if True, skipping the
event queue. All event handlers will run in the
same thread.

	
event_handled(name)[source]

	Returns the number of registered handlers for an event.

	Parameters:	name – The name of the event to check.

	
event_queue = None

	A queue of stream, custom, and scheduled events to be processed.

	
exception(exception)[source]

	Process an unknown exception.

Meant to be overridden.

	Parameters:	exception – An unhandled exception object.

	
filesocket = None

	A file-like wrapper for the socket for use with the
ElementTree [http://docs.python.org/3.2/library/xml.etree.elementtree.html#xml.etree.ElementTree] module.

	
getId()

	Return the current unique stream ID in hexadecimal form.

	
getNewId()

	Generate and return a new stream ID in hexadecimal form.

Many stanzas, handlers, or matchers may require unique
ID values. Using this method ensures that all new ID values
are unique in this stream.

	
get_dns_records(domain, port=None)[source]

	Get the DNS records for a domain.

	Parameters:	
	domain – The domain in question.

	port – If the results don’t include a port, use this one.

	
get_id()[source]

	Return the current unique stream ID in hexadecimal form.

	
incoming_filter(xml)[source]

	Filter incoming XML objects before they are processed.

Possible uses include remapping namespaces, or correcting elements
from sources with incorrect behavior.

Meant to be overridden.

	
keyfile = None

	Path to a file containing the private key for the selected
client certificate to use for authenticating via SASL EXTERNAL.

	
namespace_map = None

	A mapping of XML namespaces to well-known prefixes.

	
new_id()[source]

	Generate and return a new stream ID in hexadecimal form.

Many stanzas, handlers, or matchers may require unique
ID values. Using this method ensures that all new ID values
are unique in this stream.

	
pick_dns_answer(domain, port=None)[source]

	Pick a server and port from DNS answers.

Gets DNS answers if none available.
Removes used answer from available answers.

	Parameters:	
	domain – The domain in question.

	port – If the results don’t include a port, use this one.

	
process(**kwargs)[source]

	Initialize the XML streams and begin processing events.

The number of threads used for processing stream events is determined
by HANDLER_THREADS.

	Parameters:	
	block (bool [http://docs.python.org/3.2/library/functions.html#bool]) – If False, then event dispatcher will run
in a separate thread, allowing for the stream to be
used in the background for another application.
Otherwise, process(block=True) blocks the current
thread. Defaults to False.

	threaded (bool [http://docs.python.org/3.2/library/functions.html#bool]) – DEPRECATED
If True, then event dispatcher will run
in a separate thread, allowing for the stream to be
used in the background for another application.
Defaults to True. This does not mean that no
threads are used at all if threaded=False.

Regardless of these threading options, these threads will
always exist:

	The event queue processor

	The send queue processor

	The scheduler

	
proxy_config = None

	An optional dictionary of proxy settings. It may provide:
:host: The host offering proxy services.
:port: The port for the proxy service.
:username: Optional username for accessing the proxy.
:password: Optional password for accessing the proxy.

	
reconnect(reattempt=True, wait=False, send_close=True)[source]

	Reset the stream’s state and reconnect to the server.

	
reconnect_delay = None

	The current amount to time to delay attempting to reconnect.
This value doubles (with some jitter) with each failed
connection attempt up to reconnect_max_delay seconds.

	
reconnect_max_attempts = None

	Maximum number of attempts to connect to the server before
quitting and raising a ‘connect_failed’ event. Setting to
None allows infinite reattempts, while setting it to 0
will disable reconnection attempts. Defaults to None.

	
reconnect_max_delay = None

	Maximum time to delay between connection attempts is one hour.

	
registerHandler(handler, before=None, after=None)

	Add a stream event handler that will be executed when a matching
stanza is received.

	Parameters:	handler – The BaseHandler
derived object to execute.

	
registerStanza(stanza_class)

	Add a stanza object class as a known root stanza.

A root stanza is one that appears as a direct child of the stream’s
root element.

Stanzas that appear as substanzas of a root stanza do not need to
be registered here. That is done using register_stanza_plugin() from
sleekxmpp.xmlstream.stanzabase.

Stanzas that are not registered will not be converted into
stanza objects, but may still be processed using handlers and
matchers.

	Parameters:	stanza_class – The top-level stanza object’s class.

	
register_handler(handler, before=None, after=None)[source]

	Add a stream event handler that will be executed when a matching
stanza is received.

	Parameters:	handler – The BaseHandler
derived object to execute.

	
register_stanza(stanza_class)[source]

	Add a stanza object class as a known root stanza.

A root stanza is one that appears as a direct child of the stream’s
root element.

Stanzas that appear as substanzas of a root stanza do not need to
be registered here. That is done using register_stanza_plugin() from
sleekxmpp.xmlstream.stanzabase.

Stanzas that are not registered will not be converted into
stanza objects, but may still be processed using handlers and
matchers.

	Parameters:	stanza_class – The top-level stanza object’s class.

	
removeHandler(name)

	Remove any stream event handlers with the given name.

	Parameters:	name – The name of the handler.

	
removeStanza(stanza_class)

	Remove a stanza from being a known root stanza.

A root stanza is one that appears as a direct child of the stream’s
root element.

Stanzas that are not registered will not be converted into
stanza objects, but may still be processed using handlers and
matchers.

	
remove_handler(name)[source]

	Remove any stream event handlers with the given name.

	Parameters:	name – The name of the handler.

	
remove_stanza(stanza_class)[source]

	Remove a stanza from being a known root stanza.

A root stanza is one that appears as a direct child of the stream’s
root element.

Stanzas that are not registered will not be converted into
stanza objects, but may still be processed using handlers and
matchers.

	
response_timeout = None

	The time in seconds to wait before timing out waiting
for response stanzas.

	
schedule(name, seconds, callback, args=None, kwargs=None, repeat=False)[source]

	Schedule a callback function to execute after a given delay.

	Parameters:	
	name – A unique name for the scheduled callback.

	seconds – The time in seconds to wait before executing.

	callback – A pointer to the function to execute.

	args – A tuple of arguments to pass to the function.

	kwargs – A dictionary of keyword arguments to pass to
the function.

	repeat – Flag indicating if the scheduled event should
be reset and repeat after executing.

	
scheduler = None

	A Scheduler instance for
executing callbacks in the future based on time delays.

	
send(data, mask=None, timeout=None, now=False, use_filters=True)[source]

	A wrapper for send_raw() for sending stanza objects.

May optionally block until an expected response is received.

	Parameters:	
	data – The ElementBase
stanza to send on the stream.

	mask – DEPRECATED
An XML string snippet matching the structure
of the expected response. Execution will block
in this thread until the response is received
or a timeout occurs.

	timeout (int [http://docs.python.org/3.2/library/functions.html#int]) – Time in seconds to wait for a response before
continuing. Defaults to response_timeout.

	now (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Indicates if the send queue should be skipped,
sending the stanza immediately. Useful mainly
for stream initialization stanzas.
Defaults to False.

	use_filters (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Indicates if outgoing filters should be
applied to the given stanza data. Disabling
filters is useful when resending stanzas.
Defaults to True.

	
sendRaw(data, now=False, reconnect=None)

	Send raw data across the stream.

	Parameters:	
	data (string [http://docs.python.org/3.2/library/string.html#string]) – Any string value.

	reconnect (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Indicates if the stream should be
restarted if there is an error sending
the stanza. Used mainly for testing.
Defaults to auto_reconnect.

	
sendXML(data, mask=None, timeout=None, now=False)

	Send an XML object on the stream, and optionally wait
for a response.

	Parameters:	
	data – The Element [http://docs.python.org/3.2/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element] XML object
to send on the stream.

	mask – DEPRECATED
An XML string snippet matching the structure
of the expected response. Execution will block
in this thread until the response is received
or a timeout occurs.

	timeout (int [http://docs.python.org/3.2/library/functions.html#int]) – Time in seconds to wait for a response before
continuing. Defaults to response_timeout.

	now (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Indicates if the send queue should be skipped,
sending the stanza immediately. Useful mainly
for stream initialization stanzas.
Defaults to False.

	
send_queue = None

	A queue of string data to be sent over the stream.

	
send_raw(data, now=False, reconnect=None)[source]

	Send raw data across the stream.

	Parameters:	
	data (string [http://docs.python.org/3.2/library/string.html#string]) – Any string value.

	reconnect (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Indicates if the stream should be
restarted if there is an error sending
the stanza. Used mainly for testing.
Defaults to auto_reconnect.

	
send_xml(data, mask=None, timeout=None, now=False)[source]

	Send an XML object on the stream, and optionally wait
for a response.

	Parameters:	
	data – The Element [http://docs.python.org/3.2/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element] XML object
to send on the stream.

	mask – DEPRECATED
An XML string snippet matching the structure
of the expected response. Execution will block
in this thread until the response is received
or a timeout occurs.

	timeout (int [http://docs.python.org/3.2/library/functions.html#int]) – Time in seconds to wait for a response before
continuing. Defaults to response_timeout.

	now (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Indicates if the send queue should be skipped,
sending the stanza immediately. Useful mainly
for stream initialization stanzas.
Defaults to False.

	
session_started_event = None

	An Event [http://docs.python.org/3.2/library/threading.html#threading.Event] to signal the start of a stream
session. Until this event fires, the send queue is not used
and data is sent immediately over the wire.

	
session_timeout = None

	The default time in seconds to wait for a session to start
after connecting before reconnecting and trying again.

	
setSocket(socket, ignore=False)

	Set the socket to use for the stream.

The filesocket will be recreated as well.

	Parameters:	
	socket – The new socket object to use.

	ignore (bool [http://docs.python.org/3.2/library/functions.html#bool]) – If True, don’t set the connection
state to 'connected'.

	
set_socket(socket, ignore=False)[source]

	Set the socket to use for the stream.

The filesocket will be recreated as well.

	Parameters:	
	socket – The new socket object to use.

	ignore (bool [http://docs.python.org/3.2/library/functions.html#bool]) – If True, don’t set the connection
state to 'connected'.

	
ssl_retry_delay = None

	The maximum number of times to attempt resending data due to
an SSL error.

	
ssl_retry_max = None

	The time in seconds to delay between attempts to resend data
after an SSL error.

	
ssl_version = None

	Most XMPP servers support TLSv1, but OpenFire in particular
does not work well with it. For OpenFire, set
ssl_version to use SSLv23:

import ssl
xmpp.ssl_version = ssl.PROTOCOL_SSLv23

	
startTLS()

	Perform handshakes for TLS.

If the handshake is successful, the XML stream will need
to be restarted.

	
start_stream_handler(xml)[source]

	Perform any initialization actions, such as handshakes,
once the stream header has been sent.

Meant to be overridden.

	
start_tls()[source]

	Perform handshakes for TLS.

If the handshake is successful, the XML stream will need
to be restarted.

	
state = None

	The connection state machine tracks if the stream is
'connected' or 'disconnected'.

	
stop = None

	An Event [http://docs.python.org/3.2/library/threading.html#threading.Event] to signal that the application
is stopping, and that all threads should shutdown.

	
stream_end_event = None

	An Event [http://docs.python.org/3.2/library/threading.html#threading.Event] to signal receiving a closing
stream tag from the server.

	
stream_footer = None

	The default closing tag for the stream element.

	
stream_header = None

	The default opening tag for the stream element.

	
stream_ns = None

	The namespace of the enveloping stream element.

	
use_cdata = None

	Use CDATA for escaping instead of XML entities. Defaults
to False.

	
use_ipv6 = None

	If set to True, attempt to use IPv6.

	
use_proxy = None

	If set to True, attempt to connect through an HTTP
proxy based on the settings in proxy_config.

	
use_signals(signals=None)[source]

	Register signal handlers for SIGHUP and SIGTERM.

By using signals, a 'killed' event will be raised when the
application is terminated.

If a signal handler already existed, it will be executed first,
before the 'killed' event is raised.

	Parameters:	signals (list [http://docs.python.org/3.2/library/functions.html#list]) – A list of signal names to be monitored.
Defaults to ['SIGHUP', 'SIGTERM'].

	
use_ssl = None

	Enable connecting to the server directly over SSL, in
particular when the service provides two ports: one for
non-SSL traffic and another for SSL traffic.

	
use_tls = None

	Enable connecting to the service without using SSL
immediately, but allow upgrading the connection later
to use SSL.

	
wait_timeout = None

	The time in seconds to wait for events from the event queue,
and also the time between checks for the process stop signal.

	
whitespace_keepalive = None

	If True, periodically send a whitespace character over the
wire to keep the connection alive. Mainly useful for connections
traversing NAT.

	
whitespace_keepalive_interval = None

	The default interval between keepalive signals when
whitespace_keepalive is enabled.

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Scheduler

	
class sleekxmpp.xmlstream.scheduler.Task(name, seconds, callback, args=None, kwargs=None, repeat=False, qpointer=None)[source]

	A scheduled task that will be executed by the scheduler
after a given time interval has passed.

	Parameters:	
	name (string [http://docs.python.org/3.2/library/string.html#string]) – The name of the task.

	seconds (int [http://docs.python.org/3.2/library/functions.html#int]) – The number of seconds to wait before executing.

	callback – The function to execute.

	args (tuple [http://docs.python.org/3.2/library/functions.html#tuple]) – The arguments to pass to the callback.

	kwargs (dict [http://docs.python.org/3.2/library/stdtypes.html#dict]) – The keyword arguments to pass to the callback.

	repeat (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Indicates if the task should repeat.
Defaults to False.

	pointer – A pointer to an event queue for queuing callback
execution instead of executing immediately.

	
args = None

	The arguments to pass to callback.

	
callback = None

	The function to execute once enough time has passed.

	
kwargs = None

	The keyword arguments to pass to callback.

	
name = None

	The name of the task.

	
next = None

	The time when the task should execute next.

	
qpointer = None

	The main event queue, which allows for callbacks to
be queued for execution instead of executing immediately.

	
repeat = None

	Indicates if the task should repeat after executing,
using the same seconds delay.

	
reset()[source]

	Reset the task’s timer so that it will repeat.

	
run()[source]

	Execute the task’s callback.

If an event queue was supplied, place the callback in the queue;
otherwise, execute the callback immediately.

	
seconds = None

	The number of seconds to wait before executing.

	
class sleekxmpp.xmlstream.scheduler.Scheduler(parentstop=None)[source]

	A threaded scheduler that allows for updates mid-execution unlike the
scheduler in the standard library.

Based on: http://docs.python.org/library/sched.html#module-sched

	Parameters:	parentstop – An Event [http://docs.python.org/3.2/library/threading.html#threading.Event] to signal stopping
the scheduler.

	
add(name, seconds, callback, args=None, kwargs=None, repeat=False, qpointer=None)[source]

	Schedule a new task.

	Parameters:	
	name (string [http://docs.python.org/3.2/library/string.html#string]) – The name of the task.

	seconds (int [http://docs.python.org/3.2/library/functions.html#int]) – The number of seconds to wait before executing.

	callback – The function to execute.

	args (tuple [http://docs.python.org/3.2/library/functions.html#tuple]) – The arguments to pass to the callback.

	kwargs (dict [http://docs.python.org/3.2/library/stdtypes.html#dict]) – The keyword arguments to pass to the callback.

	repeat (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Indicates if the task should repeat.
Defaults to False.

	pointer – A pointer to an event queue for queuing callback
execution instead of executing immediately.

	
addq = None

	A queue for storing tasks

	
process(threaded=True, daemon=False)[source]

	Begin accepting and processing scheduled tasks.

	Parameters:	threaded (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Indicates if the scheduler should execute
in its own thread. Defaults to True.

	
quit()[source]

	Shutdown the scheduler.

	
remove(name)[source]

	Remove a scheduled task ahead of schedule, and without
executing it.

	Parameters:	name (string [http://docs.python.org/3.2/library/string.html#string]) – The name of the task to remove.

	
run = None

	A flag indicating that the scheduler is running.

	
schedule = None

	A list of tasks in order of execution time.

	
schedule_lock = None

	Lock for accessing the task queue.

	
stop = None

	An Event [http://docs.python.org/3.2/library/threading.html#threading.Event] instance for signalling to stop
the scheduler.

	
thread = None

	If running in threaded mode, this will be the thread processing
the schedule.

	
wait_timeout = None

	The time in seconds to wait for events from the event queue,
and also the time between checks for the process stop signal.

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

XML Serialization

Since the XML layer of SleekXMPP is based on ElementTree [http://docs.python.org/3.2/library/xml.etree.elementtree.html#xml.etree.ElementTree],
why not just use the built-in tostring() [http://docs.python.org/3.2/library/xml.etree.elementtree.html#xml.etree.ElementTree.tostring]
method? The answer is that using that method produces ugly results when
using namespaces. The tostring() method used here intelligently
hides namespaces when able and does not introduce excessive namespace
prefixes:

>>> from sleekxmpp.xmlstream.tostring import tostring
>>> from xml.etree import cElementTree as ET
>>> xml = ET.fromstring('<foo xmlns="bar"><baz /></foo>')
>>> ET.tostring(xml)
'<ns0:foo xmlns:ns0="bar"><ns0:baz /></foo>'
>>> tostring(xml)
'<foo xmlns="bar"><baz /></foo>'

As a side effect of this namespace hiding, using tostring() may
produce unexpected results depending on how the tostring() method
is invoked. For example, when sending XML on the wire, the main XMPP
stanzas with their namespace of jabber:client will not include the
namespace because that is already declared by the stream header. But, if
you create a Message instance and dump
it to the terminal, the jabber:client namespace will appear.

	
sleekxmpp.xmlstream.tostring.tostring(xml=None, xmlns=u'', stream=None, outbuffer=u'', top_level=False, open_only=False, namespaces=None)[source]

	Serialize an XML object to a Unicode string.

If an outer xmlns is provided using xmlns, then the current element’s
namespace will not be included if it matches the outer namespace. An
exception is made for elements that have an attached stream, and appear
at the stream root.

	Parameters:	
	xml (Element [http://docs.python.org/3.2/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element]) – The XML object to serialize.

	xmlns (string [http://docs.python.org/3.2/library/string.html#string]) – Optional namespace of an element wrapping the XML
object.

	stream (XMLStream) – The XML stream that generated the XML object.

	outbuffer (string [http://docs.python.org/3.2/library/string.html#string]) – Optional buffer for storing serializations
during recursive calls.

	top_level (bool [http://docs.python.org/3.2/library/functions.html#bool]) – Indicates that the element is the outermost
element.

	namespaces (set [http://docs.python.org/3.2/library/stdtypes.html#set]) – Track which namespaces are in active use so
that new ones can be declared when needed.

	Return type:	Unicode string

Escaping Special Characters

In order to prevent errors when sending arbitrary text as the textual
content of an XML element, certain characters must be escaped. These
are: &, <, >, ", and '. The default escaping
mechanism is to replace those characters with their equivalent escape
entities: &, <, >, ', and ".

In the future, the use of CDATA sections may be allowed to reduce the
size of escaped text or for when other XMPP processing agents do not
undertand these entities.

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	1.0 Documentation

Python 2.6 File Socket Shims

	
class sleekxmpp.xmlstream.filesocket.FileSocket(sock, mode='rb', bufsize=-1, close=False)[source]

	Create a file object wrapper for a socket to work around
issues present in Python 2.6 when using sockets as file objects.

The parser for cElementTree requires a file, but
we will be reading from the XMPP connection socket instead.

	
read(size=4096)[source]

	Read data from the socket as if it were a file.

	
class sleekxmpp.xmlstream.filesocket.Socket26(family=2, type=1, proto=0, _sock=None)[source]

	A custom socket implementation that uses our own FileSocket class
to work around issues in Python 2.6 when using sockets as files.

	
makefile([mode[, bufsize]]) file object[source]

	Return a regular file object corresponding to the socket. The mode
and bufsize arguments are as for the built-in open() function.

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	1.0 Documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 sleekxmpp	

 	
 	
 sleekxmpp.basexmpp	

 	
 	
 sleekxmpp.clientxmpp	

 	
 	
 sleekxmpp.componentxmpp	

 	
 	
 sleekxmpp.exceptions	

 	
 	
 sleekxmpp.xmlstream.filesocket	

 	
 	
 sleekxmpp.xmlstream.handler.base	

 	
 	
 sleekxmpp.xmlstream.handler.callback	

 	
 	
 sleekxmpp.xmlstream.handler.waiter	

 	
 	
 sleekxmpp.xmlstream.jid	

 	
 	
 sleekxmpp.xmlstream.matcher.base	

 	
 	
 sleekxmpp.xmlstream.matcher.id	

 	
 	
 sleekxmpp.xmlstream.matcher.stanzapath	

 	
 	
 sleekxmpp.xmlstream.matcher.xmlmask	

 	
 	
 sleekxmpp.xmlstream.matcher.xpath	

 	
 	
 sleekxmpp.xmlstream.scheduler	

 	
 	
 sleekxmpp.xmlstream.stanzabase	

 	
 	
 sleekxmpp.xmlstream.tostring	

 	
 	
 sleekxmpp.xmlstream.xmlstream	

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	1.0 Documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	

 	__bool__() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	__copy__() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	__delitem__() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	__eq__() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	__getitem__() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	__iter__() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	__len__() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	__ne__() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	__next__() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	__nonzero__() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	__repr__() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	__setitem__() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	__str__() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	__weakref__ (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	

 	_del_attr() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	_del_sub() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	_delAttr() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	_delSub() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	_get_attr() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	_get_stanza_values() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	_get_sub_text() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	_getAttr() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	_getSubText() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	_set_attr() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	_set_stanza_values() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	_set_sub_text() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	_setAttr() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	_setSubText() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

A

 	

 	add() (sleekxmpp.xmlstream.scheduler.Scheduler method)

 	add_event_handler() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	add_filter() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	add_handler() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	addq (sleekxmpp.xmlstream.scheduler.Scheduler attribute)

 	address (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	api (sleekxmpp.basexmpp.BaseXMPP attribute)

 	

 	append() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	appendxml() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	args (sleekxmpp.xmlstream.scheduler.Task attribute)

 	attrib (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	auto_authorize (sleekxmpp.basexmpp.BaseXMPP attribute)

 	auto_reconnect (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	auto_subscribe (sleekxmpp.basexmpp.BaseXMPP attribute)

B

 	

 	BaseHandler (class in sleekxmpp.xmlstream.handler.base)

 	BaseXMPP, [1], [2], [3]

 	

 	(class in sleekxmpp.basexmpp)

 	

 	bool_interfaces (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	boundjid (sleekxmpp.basexmpp.BaseXMPP attribute)

C

 	

 	ca_certs (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	Callback (class in sleekxmpp.xmlstream.handler.callback)

 	callback (sleekxmpp.xmlstream.scheduler.Task attribute)

 	certfile (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	changed_status

 	changed_subscription

 	chatstate_active

 	chatstate_composing

 	chatstate_gone

 	chatstate_inactive

 	chatstate_paused

 	

 	check_delete() (sleekxmpp.xmlstream.handler.base.BaseHandler method)

 	

 	(sleekxmpp.xmlstream.handler.waiter.Waiter method)

 	checkDelete() (sleekxmpp.xmlstream.handler.base.BaseHandler method)

 	clear() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	client_roster (sleekxmpp.basexmpp.BaseXMPP attribute)

 	ClientXMPP, [1]

 	

 	(class in sleekxmpp.clientxmpp)

 	ComponentXMPP, [1]

 	

 	(class in sleekxmpp.componentxmpp)

 	configure_dns() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	configure_socket() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	connect() (sleekxmpp.clientxmpp.ClientXMPP method)

 	

 	(sleekxmpp.componentxmpp.ComponentXMPP method)

 	(sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	connected

 	connection_failed

D

 	

 	default_domain (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	default_ns (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	default_port (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	del_event_handler() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	del_filter() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	del_payload() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	del_roster_item() (sleekxmpp.clientxmpp.ClientXMPP method)

 	delPayload() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	

 	delRosterItem() (sleekxmpp.clientxmpp.ClientXMPP method)

 	disco_info

 	disco_items

 	disconnect() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	disconnect_wait (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	disconnected

 	dns_answers (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	dns_service (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

E

 	

 	ElementBase (class in sleekxmpp.xmlstream.stanzabase)

 	enable() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	end_session_on_disconnect (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	entity_time

 	error() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	

 	event handler

 	event() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	event_handled() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	event_queue (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	exception() (sleekxmpp.basexmpp.BaseXMPP method)

 	

 	(sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	(sleekxmpp.xmlstream.xmlstream.XMLStream method)

F

 	

 	failed_auth

 	FileSocket (class in sleekxmpp.xmlstream.filesocket)

 	filesocket (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	

 	find() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	findall() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	fulljid (sleekxmpp.basexmpp.BaseXMPP attribute)

G

 	

 	get() (sleekxmpp.basexmpp.BaseXMPP method)

 	

 	(sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	get_dns_records() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	get_from() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	get_id() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	get_payload() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	get_roster() (sleekxmpp.clientxmpp.ClientXMPP method)

 	get_to() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	getFrom() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	getId() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	getNewId() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	getPayload() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	getRoster() (sleekxmpp.clientxmpp.ClientXMPP method)

 	

 	getStanzaValues() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	getTo() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	gmail_messages

 	gmail_notify

 	got_offline

 	got_online

 	groupchat_direct_invite

 	groupchat_invite

 	groupchat_message

 	groupchat_presence

 	groupchat_subject

I

 	

 	incoming_filter() (sleekxmpp.componentxmpp.ComponentXMPP method)

 	

 	(sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	init_plugin() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	initPlugin() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	interfaces (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	

 	(sleekxmpp.xmlstream.stanzabase.StanzaBase attribute)

 	iq (sleekxmpp.exceptions.IqError attribute)

 	

 	(sleekxmpp.exceptions.IqTimeout attribute)

 	Iq() (sleekxmpp.basexmpp.BaseXMPP method)

 	

 	IqError

 	IqTimeout

 	is_component (sleekxmpp.basexmpp.BaseXMPP attribute)

 	is_extension (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	iterables (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

J

 	

 	JID (class in sleekxmpp.xmlstream.jid)

 	

 	jid (sleekxmpp.basexmpp.BaseXMPP attribute)

K

 	

 	keyfile (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	keys() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	

 	killed

 	kwargs (sleekxmpp.xmlstream.scheduler.Task attribute)

L

 	

 	lang_interfaces (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	

 	last_activity

M

 	

 	make_iq() (sleekxmpp.basexmpp.BaseXMPP method)

 	make_iq_error() (sleekxmpp.basexmpp.BaseXMPP method)

 	make_iq_get() (sleekxmpp.basexmpp.BaseXMPP method)

 	make_iq_query() (sleekxmpp.basexmpp.BaseXMPP method)

 	make_iq_result() (sleekxmpp.basexmpp.BaseXMPP method)

 	make_iq_set() (sleekxmpp.basexmpp.BaseXMPP method)

 	make_message() (sleekxmpp.basexmpp.BaseXMPP method)

 	make_presence() (sleekxmpp.basexmpp.BaseXMPP method)

 	make_query_roster() (sleekxmpp.basexmpp.BaseXMPP method)

 	makefile() (sleekxmpp.xmlstream.filesocket.Socket26 method)

 	makeIq() (sleekxmpp.basexmpp.BaseXMPP method)

 	makeIqError() (sleekxmpp.basexmpp.BaseXMPP method)

 	makeIqGet() (sleekxmpp.basexmpp.BaseXMPP method)

 	makeIqQuery() (sleekxmpp.basexmpp.BaseXMPP method)

 	makeIqResult() (sleekxmpp.basexmpp.BaseXMPP method)

 	makeIqSet() (sleekxmpp.basexmpp.BaseXMPP method)

 	makeMessage() (sleekxmpp.basexmpp.BaseXMPP method)

 	

 	makePresence() (sleekxmpp.basexmpp.BaseXMPP method)

 	makeQueryRoster() (sleekxmpp.basexmpp.BaseXMPP method)

 	match() (sleekxmpp.xmlstream.handler.base.BaseHandler method)

 	

 	(sleekxmpp.xmlstream.matcher.base.MatcherBase method)

 	(sleekxmpp.xmlstream.matcher.id.MatcherId method)

 	(sleekxmpp.xmlstream.matcher.stanzapath.StanzaPath method)

 	(sleekxmpp.xmlstream.matcher.xmlmask.MatchXMLMask method)

 	(sleekxmpp.xmlstream.matcher.xpath.MatchXPath method)

 	(sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	MatcherBase (class in sleekxmpp.xmlstream.matcher.base)

 	MatcherId (class in sleekxmpp.xmlstream.matcher.id)

 	MatchXMLMask (class in sleekxmpp.xmlstream.matcher.xmlmask)

 	MatchXPath (class in sleekxmpp.xmlstream.matcher.xpath)

 	max_redirects (sleekxmpp.basexmpp.BaseXMPP attribute)

 	message

 	Message() (sleekxmpp.basexmpp.BaseXMPP method)

 	message_form

 	message_xform

 	muc::[room]::got_offline

 	muc::[room]::got_online

 	muc::[room]::message

 	muc::[room]::presence

N

 	

 	name (sleekxmpp.xmlstream.handler.base.BaseHandler attribute)

 	

 	(sleekxmpp.xmlstream.scheduler.Task attribute)

 	(sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	namespace (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	

 	(sleekxmpp.xmlstream.stanzabase.StanzaBase attribute)

 	namespace_map (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	

 	new_id() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	next (sleekxmpp.xmlstream.scheduler.Task attribute)

 	next() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

O

 	

 	overrides (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

P

 	

 	parent (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	pick_dns_answer() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	plugin (sleekxmpp.basexmpp.BaseXMPP attribute)

 	plugin_attrib (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	plugin_attrib_map (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	plugin_config (sleekxmpp.basexmpp.BaseXMPP attribute)

 	plugin_iterables (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	plugin_multi_attrib (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	plugin_overrides (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	plugin_tag_map (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	plugin_whitelist (sleekxmpp.basexmpp.BaseXMPP attribute)

 	plugins (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	pop() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	

 	prerun() (sleekxmpp.xmlstream.handler.base.BaseHandler method)

 	

 	(sleekxmpp.xmlstream.handler.callback.Callback method)

 	(sleekxmpp.xmlstream.handler.waiter.Waiter method)

 	Presence() (sleekxmpp.basexmpp.BaseXMPP method)

 	presence_available

 	presence_error

 	presence_form

 	presence_probe

 	presence_subscribe

 	presence_subscribed

 	presence_unavailable

 	presence_unsubscribe

 	presence_unsubscribed

 	process() (sleekxmpp.basexmpp.BaseXMPP method)

 	

 	(sleekxmpp.xmlstream.scheduler.Scheduler method)

 	(sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	proxy_config (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

Q

 	

 	qpointer (sleekxmpp.xmlstream.scheduler.Task attribute)

 	

 	quit() (sleekxmpp.xmlstream.scheduler.Scheduler method)

R

 	

 	read() (sleekxmpp.xmlstream.filesocket.FileSocket method)

 	reconnect() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	reconnect_delay (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	reconnect_max_attempts (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	reconnect_max_delay (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	regenerate() (sleekxmpp.xmlstream.jid.JID method)

 	register_feature() (sleekxmpp.clientxmpp.ClientXMPP method)

 	register_handler() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	register_plugin() (sleekxmpp.basexmpp.BaseXMPP method)

 	register_plugins() (sleekxmpp.basexmpp.BaseXMPP method)

 	register_stanza() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	register_stanza_plugin() (in module sleekxmpp.xmlstream.stanzabase)

 	registerFeature() (sleekxmpp.clientxmpp.ClientXMPP method)

 	registerHandler() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	registerPlugin() (sleekxmpp.basexmpp.BaseXMPP method)

 	registerStanza() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	

 	remove() (sleekxmpp.xmlstream.scheduler.Scheduler method)

 	remove_handler() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	remove_stanza() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	removeHandler() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	removeStanza() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	repeat (sleekxmpp.xmlstream.scheduler.Task attribute)

 	reply() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	requested_jid (sleekxmpp.basexmpp.BaseXMPP attribute)

 	reset() (sleekxmpp.xmlstream.jid.JID method)

 	

 	(sleekxmpp.xmlstream.scheduler.Task method)

 	resource (sleekxmpp.basexmpp.BaseXMPP attribute)

 	response_timeout (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	RestartStream

 	roster (sleekxmpp.basexmpp.BaseXMPP attribute)

 	roster_update

 	run (sleekxmpp.xmlstream.scheduler.Scheduler attribute)

 	run() (sleekxmpp.xmlstream.handler.base.BaseHandler method)

 	

 	(sleekxmpp.xmlstream.handler.callback.Callback method)

 	(sleekxmpp.xmlstream.handler.waiter.Waiter method)

 	(sleekxmpp.xmlstream.scheduler.Task method)

S

 	

 	schedule (sleekxmpp.xmlstream.scheduler.Scheduler attribute)

 	schedule() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	schedule_lock (sleekxmpp.xmlstream.scheduler.Scheduler attribute)

 	Scheduler (class in sleekxmpp.xmlstream.scheduler)

 	scheduler (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	seconds (sleekxmpp.xmlstream.scheduler.Task attribute)

 	send() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	

 	(sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	send_message() (sleekxmpp.basexmpp.BaseXMPP method)

 	send_presence() (sleekxmpp.basexmpp.BaseXMPP method)

 	send_presence_subscription() (sleekxmpp.basexmpp.BaseXMPP method)

 	send_queue (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	send_raw() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	send_xml() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	sendMessage() (sleekxmpp.basexmpp.BaseXMPP method)

 	sendPresence() (sleekxmpp.basexmpp.BaseXMPP method)

 	sendPresenceSubscription() (sleekxmpp.basexmpp.BaseXMPP method)

 	sendRaw() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	sendXML() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	sent_presence

 	sentpresence (sleekxmpp.basexmpp.BaseXMPP attribute)

 	server (sleekxmpp.basexmpp.BaseXMPP attribute)

 	session_end

 	session_start

 	session_started_event (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	session_timeout (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	set_from() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	set_jid() (sleekxmpp.basexmpp.BaseXMPP method)

 	set_payload() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	set_socket() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	set_to() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	set_type() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	setDefaultNS() (sleekxmpp.xmlstream.matcher.xmlmask.MatchXMLMask method)

 	setFrom() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	setPayload() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	setSocket() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	setStanzaValues() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	setTo() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	setType() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	setup() (sleekxmpp.xmlstream.stanzabase.ElementBase method)

 	sleekxmpp.basexmpp (module)

 	sleekxmpp.clientxmpp (module)

 	sleekxmpp.componentxmpp (module)

 	

 	sleekxmpp.exceptions (module)

 	sleekxmpp.xmlstream.filesocket (module)

 	sleekxmpp.xmlstream.handler.base (module)

 	sleekxmpp.xmlstream.handler.callback (module)

 	sleekxmpp.xmlstream.handler.waiter (module)

 	sleekxmpp.xmlstream.jid (module)

 	sleekxmpp.xmlstream.matcher.base (module)

 	sleekxmpp.xmlstream.matcher.id (module)

 	sleekxmpp.xmlstream.matcher.stanzapath (module)

 	sleekxmpp.xmlstream.matcher.xmlmask (module)

 	sleekxmpp.xmlstream.matcher.xpath (module)

 	sleekxmpp.xmlstream.scheduler (module)

 	sleekxmpp.xmlstream.stanzabase (module)

 	sleekxmpp.xmlstream.tostring (module)

 	sleekxmpp.xmlstream.xmlstream (module)

 	Socket26 (class in sleekxmpp.xmlstream.filesocket)

 	socket_error

 	ssl_retry_delay (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	ssl_retry_max (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	ssl_version (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	stanza (sleekxmpp.basexmpp.BaseXMPP attribute)

 	stanza object

 	stanza plugin

 	StanzaBase (class in sleekxmpp.xmlstream.stanzabase)

 	StanzaPath (class in sleekxmpp.xmlstream.matcher.stanzapath)

 	start_stream_handler() (sleekxmpp.basexmpp.BaseXMPP method)

 	

 	(sleekxmpp.componentxmpp.ComponentXMPP method)

 	(sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	start_tls() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	startTLS() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	state (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	stop (sleekxmpp.xmlstream.scheduler.Scheduler attribute)

 	

 	(sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	stream (sleekxmpp.xmlstream.handler.base.BaseHandler attribute)

 	stream handler

 	stream_end_event (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	stream_error

 	stream_footer (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	stream_header (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	stream_id (sleekxmpp.basexmpp.BaseXMPP attribute)

 	stream_ns (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	sub_interfaces (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	subitem (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	substanza

T

 	

 	tag (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	tag_name() (sleekxmpp.xmlstream.stanzabase.ElementBase class method)

 	Task (class in sleekxmpp.xmlstream.scheduler)

 	

 	thread (sleekxmpp.xmlstream.scheduler.Scheduler attribute)

 	tostring() (in module sleekxmpp.xmlstream.tostring)

 	types (sleekxmpp.xmlstream.stanzabase.StanzaBase attribute)

U

 	

 	unescape() (sleekxmpp.xmlstream.jid.JID method)

 	unhandled() (sleekxmpp.xmlstream.stanzabase.StanzaBase method)

 	update_roster() (sleekxmpp.clientxmpp.ClientXMPP method)

 	updateRoster() (sleekxmpp.clientxmpp.ClientXMPP method)

 	use_cdata (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	use_ipv6 (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	use_message_ids (sleekxmpp.basexmpp.BaseXMPP attribute)

 	

 	use_presence_ids (sleekxmpp.basexmpp.BaseXMPP attribute)

 	use_proxy (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	use_signals() (sleekxmpp.xmlstream.xmlstream.XMLStream method)

 	use_ssl (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	use_tls (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	username (sleekxmpp.basexmpp.BaseXMPP attribute)

V

 	

 	values (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

W

 	

 	wait() (sleekxmpp.xmlstream.handler.waiter.Waiter method)

 	wait_timeout (sleekxmpp.xmlstream.scheduler.Scheduler attribute)

 	

 	(sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	Waiter (class in sleekxmpp.xmlstream.handler.waiter)

 	

 	whitespace_keepalive (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

 	whitespace_keepalive_interval (sleekxmpp.xmlstream.xmlstream.XMLStream attribute)

X

 	

 	xml (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	xml_ns (sleekxmpp.xmlstream.stanzabase.ElementBase attribute)

 	

 	XMLStream, [1], [2]

 	

 	(class in sleekxmpp.xmlstream.xmlstream)

 	XMPPError

 Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _modules/sleekxmpp/xmlstream/scheduler.html

 Navigation

 		
 index

 		
 modules |

 		1.0 Documentation »

 		Module code »

 Source code for sleekxmpp.xmlstream.scheduler

-*- coding: utf-8 -*-
"""
 sleekxmpp.xmlstream.scheduler
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    This module provides a task scheduler that works better
    with SleekXMPP's threading usage than the stock version.

    Part of SleekXMPP: The Sleek XMPP Library

    :copyright: (c) 2011 Nathanael C. Fritz
    :license: MIT, see LICENSE for more details
"""

import time
import threading
import logging
import itertools

from sleekxmpp.util import Queue, QueueEmpty


log = logging.getLogger(__name__)


[docs]class Task(object):

    """
    A scheduled task that will be executed by the scheduler
    after a given time interval has passed.

    :param string name: The name of the task.
    :param int seconds: The number of seconds to wait before executing.
    :param callback: The function to execute.
    :param tuple args: The arguments to pass to the callback.
    :param dict kwargs: The keyword arguments to pass to the callback.
    :param bool repeat: Indicates if the task should repeat.
                        Defaults to ``False``.
    :param pointer: A pointer to an event queue for queuing callback
                    execution instead of executing immediately.
    """

    def __init__(self, name, seconds, callback, args=None,
                 kwargs=None, repeat=False, qpointer=None):
        #: The name of the task.
        self.name = name

        #: The number of seconds to wait before executing.
        self.seconds = seconds

        #: The function to execute once enough time has passed.
        self.callback = callback

        #: The arguments to pass to :attr:`callback`.
        self.args = args or tuple()

        #: The keyword arguments to pass to :attr:`callback`.
        self.kwargs = kwargs or {}

        #: Indicates if the task should repeat after executing,
        #: using the same :attr:`seconds` delay.
        self.repeat = repeat

        #: The time when the task should execute next.
        self.next = time.time() + self.seconds

        #: The main event queue, which allows for callbacks to
        #: be queued for execution instead of executing immediately.
        self.qpointer = qpointer

[docs]    def run(self):
        """Execute the task's callback.

        If an event queue was supplied, place the callback in the queue;
        otherwise, execute the callback immediately.
        """
        if self.qpointer is not None:
            self.qpointer.put(('schedule', self.callback,
                               self.args, self.name))
        else:
            self.callback(*self.args, **self.kwargs)
        self.reset()
        return self.repeat


[docs]    def reset(self):
        """Reset the task's timer so that it will repeat."""
        self.next = time.time() + self.seconds




[docs]class Scheduler(object):

    """
    A threaded scheduler that allows for updates mid-execution unlike the
    scheduler in the standard library.

    Based on: http://docs.python.org/library/sched.html#module-sched

    :param parentstop: An :class:`~threading.Event` to signal stopping
                       the scheduler.
    """

    def __init__(self, parentstop=None):
        #: A queue for storing tasks
        self.addq = Queue()

        #: A list of tasks in order of execution time.
        self.schedule = []

        #: If running in threaded mode, this will be the thread processing
        #: the schedule.
        self.thread = None

        #: A flag indicating that the scheduler is running.
        self.run = False

        #: An :class:`~threading.Event` instance for signalling to stop
        #: the scheduler.
        self.stop = parentstop

        #: Lock for accessing the task queue.
        self.schedule_lock = threading.RLock()

[docs]    def process(self, threaded=True, daemon=False):
        """Begin accepting and processing scheduled tasks.

        :param bool threaded: Indicates if the scheduler should execute
                              in its own thread. Defaults to ``True``.
        """
        if threaded:
            self.thread = threading.Thread(name='scheduler_process',
                                           target=self._process)
            self.thread.daemon = daemon
            self.thread.start()
        else:
            self._process()


    def _process(self):
        """Process scheduled tasks."""
        self.run = True
        try:
            while self.run and not self.stop.is_set():
                wait = 0.1
                updated = False
                if self.schedule:
                    wait = self.schedule[0].next - time.time()
                try:
                    if wait <= 0.0:
                        newtask = self.addq.get(False)
                    else:
                        if wait >= 3.0:
                            wait = 3.0
                        newtask = None
                        elapsed = 0
                        while not self.stop.is_set() and \
                              newtask is None and \
                              elapsed < wait:
                            newtask = self.addq.get(True, 0.1)
                            elapsed += 0.1
                except QueueEmpty:
                    self.schedule_lock.acquire()
                    # select only those tasks which are to be executed now
                    relevant = itertools.takewhile(
                        lambda task: time.time() >= task.next, self.schedule)
                    # run the tasks and keep the return value in a tuple
                    status = map(lambda task: (task, task.run()), relevant)
                    # remove non-repeating tasks
                    for task, doRepeat in status:
                        if not doRepeat:
                            try:
                                self.schedule.remove(task)
                            except ValueError:
                                pass
                        else:
                            # only need to resort tasks if a repeated task has
                            # been kept in the list.
                            updated = True
                else:
                    updated = True
                    self.schedule_lock.acquire()
                    if newtask is not None:
                        self.schedule.append(newtask)
                finally:
                    if updated:
                        self.schedule.sort(key=lambda task: task.next)
                    self.schedule_lock.release()
        except KeyboardInterrupt:
            self.run = False
        except SystemExit:
            self.run = False
        log.debug("Quitting Scheduler thread")

[docs]    def add(self, name, seconds, callback, args=None,
            kwargs=None, repeat=False, qpointer=None):
        """Schedule a new task.

        :param string name: The name of the task.
        :param int seconds: The number of seconds to wait before executing.
        :param callback: The function to execute.
        :param tuple args: The arguments to pass to the callback.
        :param dict kwargs: The keyword arguments to pass to the callback.
        :param bool repeat: Indicates if the task should repeat.
                            Defaults to ``False``.
        :param pointer: A pointer to an event queue for queuing callback
                        execution instead of executing immediately.
        """
        try:
            self.schedule_lock.acquire()
            for task in self.schedule:
                if task.name == name:
                    raise ValueError("Key %s already exists" % name)

            self.addq.put(Task(name, seconds, callback, args,
                               kwargs, repeat, qpointer))
        except:
            raise
        finally:
            self.schedule_lock.release()


[docs]    def remove(self, name):
        """Remove a scheduled task ahead of schedule, and without
        executing it.

        :param string name: The name of the task to remove.
        """
        try:
            self.schedule_lock.acquire()
            the_task = None
            for task in self.schedule:
                if task.name == name:
                    the_task = task
            if the_task is not None:
                self.schedule.remove(the_task)
        except:
            raise
        finally:
            self.schedule_lock.release()


[docs]    def quit(self):
        """Shutdown the scheduler."""
        self.run = False







          

      

      

    


    
        © Copyright 2011, Nathan Fritz, Lance Stout.
      Created using Sphinx 1.1.3.
    

 












  
     Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_static/minus.png





search.html

    
      Navigation


      
        		
          index


        		
          modules |


        		1.0 Documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2011, Nathan Fritz, Lance Stout.
      Created using Sphinx 1.1.3.
    

 












  
     Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_static/comment-close.png





_modules/sleekxmpp/xmlstream/handler/waiter.html

    
      Navigation


      
        		
          index


        		
          modules |


        		1.0 Documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for sleekxmpp.xmlstream.handler.waiter

# -*- coding: utf-8 -*-
"""
    sleekxmpp.xmlstream.handler.waiter
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 Part of SleekXMPP: The Sleek XMPP Library

 :copyright: (c) 2011 Nathanael C. Fritz
 :license: MIT, see LICENSE for more details
"""

import logging

from sleekxmpp.util import Queue, QueueEmpty
from sleekxmpp.xmlstream.handler.base import BaseHandler

log = logging.getLogger(__name__)

[docs]class Waiter(BaseHandler):

 """
 The Waiter handler allows an event handler to block until a
 particular stanza has been received. The handler will either be
 given the matched stanza, or ``False`` if the waiter has timed out.

 :param string name: The name of the handler.
 :param matcher: A :class:`~sleekxmpp.xmlstream.matcher.base.MatcherBase`
 derived object for matching stanza objects.
 :param stream: The :class:`~sleekxmpp.xmlstream.xmlstream.XMLStream`
 instance this handler should monitor.
 """

 def __init__(self, name, matcher, stream=None):
 BaseHandler.__init__(self, name, matcher, stream=stream)
 self._payload = Queue()

[docs] def prerun(self, payload):
 """Store the matched stanza when received during processing.

 :param payload: The matched
 :class:`~sleekxmpp.xmlstream.stanzabase.ElementBase` object.
 """
 self._payload.put(payload)

[docs] def run(self, payload):
 """Do not process this handler during the main event loop."""
 pass

[docs] def wait(self, timeout=None):
 """Block an event handler while waiting for a stanza to arrive.

 Be aware that this will impact performance if called from a
 non-threaded event handler.

 Will return either the received stanza, or ``False`` if the
 waiter timed out.

 :param int timeout: The number of seconds to wait for the stanza
 to arrive. Defaults to the the stream's
 :class:`~sleekxmpp.xmlstream.xmlstream.XMLStream.response_timeout`
 value.
 """
 if timeout is None:
 timeout = self.stream().response_timeout

 elapsed_time = 0
 stanza = False
 while elapsed_time < timeout and not self.stream().stop.is_set():
 try:
 stanza = self._payload.get(True, 1)
 break
 except QueueEmpty:
 elapsed_time += 1
 if elapsed_time >= timeout:
 log.warning("Timed out waiting for %s", self.name)
 self.stream().remove_handler(self.name)
 return stanza

[docs] def check_delete(self):
 """Always remove waiters after use."""
 return True

 © Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		1.0 Documentation »

 All modules for which code is available

		sleekxmpp.basexmpp

		sleekxmpp.clientxmpp

		sleekxmpp.componentxmpp

		sleekxmpp.exceptions

		sleekxmpp.xmlstream.filesocket

		sleekxmpp.xmlstream.handler.base

		sleekxmpp.xmlstream.handler.callback

		sleekxmpp.xmlstream.handler.waiter

		sleekxmpp.xmlstream.jid

		sleekxmpp.xmlstream.matcher.base

		sleekxmpp.xmlstream.matcher.id

		sleekxmpp.xmlstream.matcher.stanzapath

		sleekxmpp.xmlstream.matcher.xmlmask

		sleekxmpp.xmlstream.matcher.xpath

		sleekxmpp.xmlstream.scheduler

		sleekxmpp.xmlstream.stanzabase

		sleekxmpp.xmlstream.tostring

		sleekxmpp.xmlstream.xmlstream

 © Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_modules/sleekxmpp/basexmpp.html

 Navigation

 		
 index

 		
 modules |

 		1.0 Documentation »

 		Module code »

 Source code for sleekxmpp.basexmpp

-*- coding: utf-8 -*-
"""
 sleekxmpp.basexmpp
    ~~~~~~~~~~~~~~~~~~

    This module provides the common XMPP functionality
    for both clients and components.

    Part of SleekXMPP: The Sleek XMPP Library

    :copyright: (c) 2011 Nathanael C. Fritz
    :license: MIT, see LICENSE for more details
"""

from __future__ import with_statement, unicode_literals

import sys
import logging
import threading

import sleekxmpp
from sleekxmpp import plugins, features, roster
from sleekxmpp.api import APIRegistry
from sleekxmpp.exceptions import IqError, IqTimeout

from sleekxmpp.stanza import Message, Presence, Iq, StreamError
from sleekxmpp.stanza.roster import Roster
from sleekxmpp.stanza.nick import Nick
from sleekxmpp.stanza.htmlim import HTMLIM

from sleekxmpp.xmlstream import XMLStream, JID
from sleekxmpp.xmlstream import ET, register_stanza_plugin
from sleekxmpp.xmlstream.matcher import MatchXPath
from sleekxmpp.xmlstream.handler import Callback
from sleekxmpp.xmlstream.stanzabase import XML_NS

from sleekxmpp.features import *
from sleekxmpp.plugins import PluginManager, register_plugin, load_plugin


log = logging.getLogger(__name__)

# In order to make sure that Unicode is handled properly
# in Python 2.x, reset the default encoding.
if sys.version_info < (3, 0):
    from sleekxmpp.util.misc_ops import setdefaultencoding
    setdefaultencoding('utf8')


[docs]class BaseXMPP(XMLStream):

    """
    The BaseXMPP class adapts the generic XMLStream class for use
    with XMPP. It also provides a plugin mechanism to easily extend
    and add support for new XMPP features.

    :param default_ns: Ensure that the correct default XML namespace
                       is used during initialization.
    """

    def __init__(self, jid='', default_ns='jabber:client'):
        XMLStream.__init__(self)

        self.default_ns = default_ns
        self.stream_ns = 'http://etherx.jabber.org/streams'
        self.namespace_map[self.stream_ns] = 'stream'

        #: An identifier for the stream as given by the server.
        self.stream_id = None

        #: The JabberID (JID) requested for this connection.
        self.requested_jid = JID(jid, cache_lock=True)

        #: The JabberID (JID) used by this connection,
        #: as set after session binding. This may even be a
        #: different bare JID than what was requested.
        self.boundjid = JID(jid, cache_lock=True)

        self._expected_server_name = self.boundjid.host
        self._redirect_attempts = 0

        #: The maximum number of consecutive see-other-host
        #: redirections that will be followed before quitting.
        self.max_redirects = 5

        self.session_bind_event = threading.Event()

        #: A dictionary mapping plugin names to plugins.
        self.plugin = PluginManager(self)

        #: Configuration options for whitelisted plugins.
        #: If a plugin is registered without any configuration,
        #: and there is an entry here, it will be used.
        self.plugin_config = {}

        #: A list of plugins that will be loaded if
        #: :meth:`register_plugins` is called.
        self.plugin_whitelist = []

        #: The main roster object. This roster supports multiple
        #: owner JIDs, as in the case for components. For clients
        #: which only have a single JID, see :attr:`client_roster`.
        self.roster = roster.Roster(self)
        self.roster.add(self.boundjid)

        #: The single roster for the bound JID. This is the
        #: equivalent of::
        #:
        #:     self.roster[self.boundjid.bare]
        self.client_roster = self.roster[self.boundjid]

        #: The distinction between clients and components can be
        #: important, primarily for choosing how to handle the
        #: ``'to'`` and ``'from'`` JIDs of stanzas.
        self.is_component = False

        #: Messages may optionally be tagged with ID values. Setting
        #: :attr:`use_message_ids` to `True` will assign all outgoing
        #: messages an ID. Some plugin features require enabling
        #: this option.
        self.use_message_ids = False

        #: Presence updates may optionally be tagged with ID values.
        #: Setting :attr:`use_message_ids` to `True` will assign all
        #: outgoing messages an ID.
        self.use_presence_ids = False

        #: The API registry is a way to process callbacks based on
        #: JID+node combinations. Each callback in the registry is
        #: marked with:
        #:
        #:   - An API name, e.g. xep_0030
        #:   - The name of an action, e.g. get_info
        #:   - The JID that will be affected
        #:   - The node that will be affected
        #:
        #: API handlers with no JID or node will act as global handlers,
        #: while those with a JID and no node will service all nodes
        #: for a JID, and handlers with both a JID and node will be
        #: used only for that specific combination. The handler that
        #: provides the most specificity will be used.
        self.api = APIRegistry(self)

        #: Flag indicating that the initial presence broadcast has
        #: been sent. Until this happens, some servers may not
        #: behave as expected when sending stanzas.
        self.sentpresence = False

        #: A reference to :mod:`sleekxmpp.stanza` to make accessing
        #: stanza classes easier.
        self.stanza = sleekxmpp.stanza

        self.register_handler(
            Callback('IM',
                     MatchXPath('{%s}message/{%s}body' % (self.default_ns,
                                                          self.default_ns)),
                     self._handle_message))
        self.register_handler(
            Callback('Presence',
                     MatchXPath("{%s}presence" % self.default_ns),
                     self._handle_presence))

        self.register_handler(
            Callback('Stream Error',
                     MatchXPath("{%s}error" % self.stream_ns),
                     self._handle_stream_error))

        self.add_event_handler('session_start',
                               self._handle_session_start)
        self.add_event_handler('disconnected',
                               self._handle_disconnected)
        self.add_event_handler('presence_available',
                               self._handle_available)
        self.add_event_handler('presence_dnd',
                               self._handle_available)
        self.add_event_handler('presence_xa',
                               self._handle_available)
        self.add_event_handler('presence_chat',
                               self._handle_available)
        self.add_event_handler('presence_away',
                               self._handle_available)
        self.add_event_handler('presence_unavailable',
                               self._handle_unavailable)
        self.add_event_handler('presence_subscribe',
                               self._handle_subscribe)
        self.add_event_handler('presence_subscribed',
                               self._handle_subscribed)
        self.add_event_handler('presence_unsubscribe',
                               self._handle_unsubscribe)
        self.add_event_handler('presence_unsubscribed',
                               self._handle_unsubscribed)
        self.add_event_handler('roster_subscription_request',
                               self._handle_new_subscription)

        # Set up the XML stream with XMPP's root stanzas.
        self.register_stanza(Message)
        self.register_stanza(Iq)
        self.register_stanza(Presence)
        self.register_stanza(StreamError)

        # Initialize a few default stanza plugins.
        register_stanza_plugin(Iq, Roster)
        register_stanza_plugin(Message, Nick)
        register_stanza_plugin(Message, HTMLIM)

[docs]    def start_stream_handler(self, xml):
        """Save the stream ID once the streams have been established.

        :param xml: The incoming stream's root element.
        """
        self.stream_id = xml.get('id', '')
        self.stream_version = xml.get('version', '')
        self.peer_default_lang = xml.get('{%s}lang' % XML_NS, None)

        if not self.is_component and not self.stream_version:
            log.warning('Legacy XMPP 0.9 protocol detected.')
            self.event('legacy_protocol')


[docs]    def process(self, *args, **kwargs):
        """Initialize plugins and begin processing the XML stream.

        The number of threads used for processing stream events is determined
        by :data:`HANDLER_THREADS`.

        :param bool block: If ``False``, then event dispatcher will run
                    in a separate thread, allowing for the stream to be
                    used in the background for another application.
                    Otherwise, ``process(block=True)`` blocks the current
                    thread. Defaults to ``False``.
        :param bool threaded: **DEPRECATED**
                    If ``True``, then event dispatcher will run
                    in a separate thread, allowing for the stream to be
                    used in the background for another application.
                    Defaults to ``True``. This does **not** mean that no
                    threads are used at all if ``threaded=False``.

        Regardless of these threading options, these threads will
        always exist:

        - The event queue processor
        - The send queue processor
        - The scheduler
        """
        for name in self.plugin:
            if not hasattr(self.plugin[name], 'post_inited'):
                if hasattr(self.plugin[name], 'post_init'):
                    self.plugin[name].post_init()
                self.plugin[name].post_inited = True
        return XMLStream.process(self, *args, **kwargs)


[docs]    def register_plugin(self, plugin, pconfig={}, module=None):
        """Register and configure  a plugin for use in this stream.

        :param plugin: The name of the plugin class. Plugin names must
                       be unique.
        :param pconfig: A dictionary of configuration data for the plugin.
                        Defaults to an empty dictionary.
        :param module: Optional refence to the module containing the plugin
                       class if using custom plugins.
        """

        # Use the global plugin config cache, if applicable
        if not pconfig:
            pconfig = self.plugin_config.get(plugin, {})

        if not self.plugin.registered(plugin):
            load_plugin(plugin, module)
        self.plugin.enable(plugin, pconfig)


[docs]    def register_plugins(self):
        """Register and initialize all built-in plugins.

        Optionally, the list of plugins loaded may be limited to those
        contained in :attr:`plugin_whitelist`.

        Plugin configurations stored in :attr:`plugin_config` will be used.
        """
        if self.plugin_whitelist:
            plugin_list = self.plugin_whitelist
        else:
            plugin_list = plugins.__all__

        for plugin in plugin_list:
            if plugin in plugins.__all__:
                self.register_plugin(plugin)
            else:
                raise NameError("Plugin %s not in plugins.__all__." % plugin)


    def __getitem__(self, key):
        """Return a plugin given its name, if it has been registered."""
        if key in self.plugin:
            return self.plugin[key]
        else:
            log.warning("Plugin '%s' is not loaded.", key)
            return False

[docs]    def get(self, key, default):
        """Return a plugin given its name, if it has been registered."""
        return self.plugin.get(key, default)


[docs]    def Message(self, *args, **kwargs):
        """Create a Message stanza associated with this stream."""
        msg = Message(self, *args, **kwargs)
        msg['lang'] = self.default_lang
        return msg


[docs]    def Iq(self, *args, **kwargs):
        """Create an Iq stanza associated with this stream."""
        return Iq(self, *args, **kwargs)


[docs]    def Presence(self, *args, **kwargs):
        """Create a Presence stanza associated with this stream."""
        pres = Presence(self, *args, **kwargs)
        pres['lang'] = self.default_lang
        return pres


[docs]    def make_iq(self, id=0, ifrom=None, ito=None, itype=None, iquery=None):
        """Create a new Iq stanza with a given Id and from JID.

        :param id: An ideally unique ID value for this stanza thread.
                   Defaults to 0.
        :param ifrom: The from :class:`~sleekxmpp.xmlstream.jid.JID`
                      to use for this stanza.
        :param ito: The destination :class:`~sleekxmpp.xmlstream.jid.JID`
                    for this stanza.
        :param itype: The :class:`~sleekxmpp.stanza.iq.Iq`'s type,
                      one of: ``'get'``, ``'set'``, ``'result'``,
                      or ``'error'``.
        :param iquery: Optional namespace for adding a query element.
        """
        iq = self.Iq()
        iq['id'] = str(id)
        iq['to'] = ito
        iq['from'] = ifrom
        iq['type'] = itype
        iq['query'] = iquery
        return iq


[docs]    def make_iq_get(self, queryxmlns=None, ito=None, ifrom=None, iq=None):
        """Create an :class:`~sleekxmpp.stanza.iq.Iq` stanza of type ``'get'``.

        Optionally, a query element may be added.

        :param queryxmlns: The namespace of the query to use.
        :param ito: The destination :class:`~sleekxmpp.xmlstream.jid.JID`
                    for this stanza.
        :param ifrom: The ``'from'`` :class:`~sleekxmpp.xmlstream.jid.JID`
                      to use for this stanza.
        :param iq: Optionally use an existing stanza instead
                   of generating a new one.
        """
        if not iq:
            iq = self.Iq()
        iq['type'] = 'get'
        iq['query'] = queryxmlns
        if ito:
            iq['to'] = ito
        if ifrom:
            iq['from'] = ifrom
        return iq


[docs]    def make_iq_result(self, id=None, ito=None, ifrom=None, iq=None):
        """
        Create an :class:`~sleekxmpp.stanza.iq.Iq` stanza of type
        ``'result'`` with the given ID value.

        :param id: An ideally unique ID value. May use :meth:`new_id()`.
        :param ito: The destination :class:`~sleekxmpp.xmlstream.jid.JID`
                    for this stanza.
        :param ifrom: The ``'from'`` :class:`~sleekxmpp.xmlstream.jid.JID`
                      to use for this stanza.
        :param iq: Optionally use an existing stanza instead
                   of generating a new one.
        """
        if not iq:
            iq = self.Iq()
            if id is None:
                id = self.new_id()
            iq['id'] = id
        iq['type'] = 'result'
        if ito:
            iq['to'] = ito
        if ifrom:
            iq['from'] = ifrom
        return iq


[docs]    def make_iq_set(self, sub=None, ito=None, ifrom=None, iq=None):
        """
        Create an :class:`~sleekxmpp.stanza.iq.Iq` stanza of type ``'set'``.

        Optionally, a substanza may be given to use as the
        stanza's payload.

        :param sub: Either an
                    :class:`~sleekxmpp.xmlstream.stanzabase.ElementBase`
                    stanza object or an
                    :class:`~xml.etree.ElementTree.Element` XML object
                    to use as the :class:`~sleekxmpp.stanza.iq.Iq`'s payload.
        :param ito: The destination :class:`~sleekxmpp.xmlstream.jid.JID`
                    for this stanza.
        :param ifrom: The ``'from'`` :class:`~sleekxmpp.xmlstream.jid.JID`
                      to use for this stanza.
        :param iq: Optionally use an existing stanza instead
                   of generating a new one.
        """
        if not iq:
            iq = self.Iq()
        iq['type'] = 'set'
        if sub != None:
            iq.append(sub)
        if ito:
            iq['to'] = ito
        if ifrom:
            iq['from'] = ifrom
        return iq


[docs]    def make_iq_error(self, id, type='cancel',
                      condition='feature-not-implemented',
                      text=None, ito=None, ifrom=None, iq=None):
        """
        Create an :class:`~sleekxmpp.stanza.iq.Iq` stanza of type ``'error'``.

        :param id: An ideally unique ID value. May use :meth:`new_id()`.
        :param type: The type of the error, such as ``'cancel'`` or
                     ``'modify'``. Defaults to ``'cancel'``.
        :param condition: The error condition. Defaults to
                          ``'feature-not-implemented'``.
        :param text: A message describing the cause of the error.
        :param ito: The destination :class:`~sleekxmpp.xmlstream.jid.JID`
                    for this stanza.
        :param ifrom: The ``'from'`` :class:`~sleekxmpp.xmlstream.jid.JID`
                      to use for this stanza.
        :param iq: Optionally use an existing stanza instead
                   of generating a new one.
        """
        if not iq:
            iq = self.Iq()
        iq['id'] = id
        iq['error']['type'] = type
        iq['error']['condition'] = condition
        iq['error']['text'] = text
        if ito:
            iq['to'] = ito
        if ifrom:
            iq['from'] = ifrom
        return iq


[docs]    def make_iq_query(self, iq=None, xmlns='', ito=None, ifrom=None):
        """
        Create or modify an :class:`~sleekxmpp.stanza.iq.Iq` stanza
        to use the given query namespace.

        :param iq: Optionally use an existing stanza instead
                   of generating a new one.
        :param xmlns: The query's namespace.
        :param ito: The destination :class:`~sleekxmpp.xmlstream.jid.JID`
                    for this stanza.
        :param ifrom: The ``'from'`` :class:`~sleekxmpp.xmlstream.jid.JID`
                      to use for this stanza.
        """
        if not iq:
            iq = self.Iq()
        iq['query'] = xmlns
        if ito:
            iq['to'] = ito
        if ifrom:
            iq['from'] = ifrom
        return iq


[docs]    def make_query_roster(self, iq=None):
        """Create a roster query element.

        :param iq: Optionally use an existing stanza instead
                   of generating a new one.
        """
        if iq:
            iq['query'] = 'jabber:iq:roster'
        return ET.Element("{jabber:iq:roster}query")


[docs]    def make_message(self, mto, mbody=None, msubject=None, mtype=None,
                     mhtml=None, mfrom=None, mnick=None):
        """
        Create and initialize a new
        :class:`~sleekxmpp.stanza.message.Message` stanza.

        :param mto: The recipient of the message.
        :param mbody: The main contents of the message.
        :param msubject: Optional subject for the message.
        :param mtype: The message's type, such as ``'chat'`` or
                      ``'groupchat'``.
        :param mhtml: Optional HTML body content in the form of a string.
        :param mfrom: The sender of the message. if sending from a client,
                      be aware that some servers require that the full JID
                      of the sender be used.
        :param mnick: Optional nickname of the sender.
        """
        message = self.Message(sto=mto, stype=mtype, sfrom=mfrom)
        message['body'] = mbody
        message['subject'] = msubject
        if mnick is not None:
            message['nick'] = mnick
        if mhtml is not None:
            message['html']['body'] = mhtml
        return message


[docs]    def make_presence(self, pshow=None, pstatus=None, ppriority=None,
                      pto=None, ptype=None, pfrom=None, pnick=None):
        """
        Create and initialize a new
        :class:`~sleekxmpp.stanza.presence.Presence` stanza.

        :param pshow: The presence's show value.
        :param pstatus: The presence's status message.
        :param ppriority: This connection's priority.
        :param pto: The recipient of a directed presence.
        :param ptype: The type of presence, such as ``'subscribe'``.
        :param pfrom: The sender of the presence.
        :param pnick: Optional nickname of the presence's sender.
        """
        presence = self.Presence(stype=ptype, sfrom=pfrom, sto=pto)
        if pshow is not None:
            presence['type'] = pshow
        if pfrom is None and self.is_component:
            presence['from'] = self.boundjid.full
        presence['priority'] = ppriority
        presence['status'] = pstatus
        presence['nick'] = pnick
        return presence


[docs]    def send_message(self, mto, mbody, msubject=None, mtype=None,
                     mhtml=None, mfrom=None, mnick=None):
        """
        Create, initialize, and send a new
        :class:`~sleekxmpp.stanza.message.Message` stanza.

        :param mto: The recipient of the message.
        :param mbody: The main contents of the message.
        :param msubject: Optional subject for the message.
        :param mtype: The message's type, such as ``'chat'`` or
                      ``'groupchat'``.
        :param mhtml: Optional HTML body content in the form of a string.
        :param mfrom: The sender of the message. if sending from a client,
                      be aware that some servers require that the full JID
                      of the sender be used.
        :param mnick: Optional nickname of the sender.
        """
        self.make_message(mto, mbody, msubject, mtype,
                          mhtml, mfrom, mnick).send()


[docs]    def send_presence(self, pshow=None, pstatus=None, ppriority=None,
                      pto=None, pfrom=None, ptype=None, pnick=None):
        """
        Create, initialize, and send a new
        :class:`~sleekxmpp.stanza.presence.Presence` stanza.

        :param pshow: The presence's show value.
        :param pstatus: The presence's status message.
        :param ppriority: This connection's priority.
        :param pto: The recipient of a directed presence.
        :param ptype: The type of presence, such as ``'subscribe'``.
        :param pfrom: The sender of the presence.
        :param pnick: Optional nickname of the presence's sender.
        """
        self.make_presence(pshow, pstatus, ppriority, pto,
                           ptype, pfrom, pnick).send()


[docs]    def send_presence_subscription(self, pto, pfrom=None,
                                   ptype='subscribe', pnick=None):
        """
        Create, initialize, and send a new
        :class:`~sleekxmpp.stanza.presence.Presence` stanza of
        type ``'subscribe'``.

        :param pto: The recipient of a directed presence.
        :param pfrom: The sender of the presence.
        :param ptype: The type of presence, such as ``'subscribe'``.
        :param pnick: Optional nickname of the presence's sender.
        """
        self.make_presence(ptype=ptype,
                           pfrom=pfrom,
                           pto=JID(pto).bare,
                           pnick=pnick).send()


    @property
    def jid(self):
        """Attribute accessor for bare jid"""
        log.warning("jid property deprecated. Use boundjid.bare")
        return self.boundjid.bare

    @jid.setter
[docs]    def jid(self, value):
        log.warning("jid property deprecated. Use boundjid.bare")
        self.boundjid.bare = value


    @property
    def fulljid(self):
        """Attribute accessor for full jid"""
        log.warning("fulljid property deprecated. Use boundjid.full")
        return self.boundjid.full

    @fulljid.setter
[docs]    def fulljid(self, value):
        log.warning("fulljid property deprecated. Use boundjid.full")
        self.boundjid.full = value


    @property
    def resource(self):
        """Attribute accessor for jid resource"""
        log.warning("resource property deprecated. Use boundjid.resource")
        return self.boundjid.resource

    @resource.setter
[docs]    def resource(self, value):
        log.warning("fulljid property deprecated. Use boundjid.resource")
        self.boundjid.resource = value


    @property
    def username(self):
        """Attribute accessor for jid usernode"""
        log.warning("username property deprecated. Use boundjid.user")
        return self.boundjid.user

    @username.setter
[docs]    def username(self, value):
        log.warning("username property deprecated. Use boundjid.user")
        self.boundjid.user = value


    @property
    def server(self):
        """Attribute accessor for jid host"""
        log.warning("server property deprecated. Use boundjid.host")
        return self.boundjid.server

    @server.setter
[docs]    def server(self, value):
        log.warning("server property deprecated. Use boundjid.host")
        self.boundjid.server = value


    @property
    def auto_authorize(self):
        """Auto accept or deny subscription requests.

        If ``True``, auto accept subscription requests.
        If ``False``, auto deny subscription requests.
        If ``None``, don't automatically respond.
        """
        return self.roster.auto_authorize

    @auto_authorize.setter
[docs]    def auto_authorize(self, value):
        self.roster.auto_authorize = value


    @property
    def auto_subscribe(self):
        """Auto send requests for mutual subscriptions.

        If ``True``, auto send mutual subscription requests.
        """
        return self.roster.auto_subscribe

    @auto_subscribe.setter
[docs]    def auto_subscribe(self, value):
        self.roster.auto_subscribe = value


[docs]    def set_jid(self, jid):
        """Rip a JID apart and claim it as our own."""
        log.debug("setting jid to %s", jid)
        self.boundjid = JID(jid, cache_lock=True)


    def getjidresource(self, fulljid):
        if '/' in fulljid:
            return fulljid.split('/', 1)[-1]
        else:
            return ''

    def getjidbare(self, fulljid):
        return fulljid.split('/', 1)[0]

    def _handle_session_start(self, event):
        """Reset redirection attempt count."""
        self._redirect_attempts = 0

    def _handle_disconnected(self, event):
        """When disconnected, reset the roster"""
        self.roster.reset()
        self.session_bind_event.clear()

    def _handle_stream_error(self, error):
        self.event('stream_error', error)

        if error['condition'] == 'see-other-host':
            other_host = error['see_other_host']
            if not other_host:
                log.warning("No other host specified.")
                return

            if self._redirect_attempts > self.max_redirects:
                log.error("Exceeded maximum number of redirection attempts.")
                return

            self._redirect_attempts += 1

            host = other_host
            port = 5222

            if '[' in other_host and ']' in other_host:
                host = other_host.split(']')[0][1:]
            elif ':' in other_host:
                host = other_host.split(':')[0]

            port_sec = other_host.split(']')[-1]
            if ':' in port_sec:
                port = int(port_sec.split(':')[1])

            self.address = (host, port)
            self.default_domain = host
            self.dns_records = None
            self.reconnect_delay = None
            self.reconnect()

    def _handle_message(self, msg):
        """Process incoming message stanzas."""
        if not self.is_component and not msg['to'].bare:
            msg['to'] = self.boundjid
        self.event('message', msg)

    def _handle_available(self, pres):
        self.roster[pres['to']][pres['from']].handle_available(pres)

    def _handle_unavailable(self, pres):
        self.roster[pres['to']][pres['from']].handle_unavailable(pres)

    def _handle_new_subscription(self, pres):
        """Attempt to automatically handle subscription requests.

        Subscriptions will be approved if the request is from
        a whitelisted JID, of :attr:`auto_authorize` is True. They
        will be rejected if :attr:`auto_authorize` is False. Setting
        :attr:`auto_authorize` to ``None`` will disable automatic
        subscription handling (except for whitelisted JIDs).

        If a subscription is accepted, a request for a mutual
        subscription will be sent if :attr:`auto_subscribe` is ``True``.
        """
        roster = self.roster[pres['to']]
        item = self.roster[pres['to']][pres['from']]
        if item['whitelisted']:
            item.authorize()
            if roster.auto_subscribe:
                item.subscribe()
        elif roster.auto_authorize:
            item.authorize()
            if roster.auto_subscribe:
                item.subscribe()
        elif roster.auto_authorize == False:
            item.unauthorize()

    def _handle_removed_subscription(self, pres):
        self.roster[pres['to']][pres['from']].handle_unauthorize(pres)

    def _handle_subscribe(self, pres):
        self.roster[pres['to']][pres['from']].handle_subscribe(pres)

    def _handle_subscribed(self, pres):
        self.roster[pres['to']][pres['from']].handle_subscribed(pres)

    def _handle_unsubscribe(self, pres):
        self.roster[pres['to']][pres['from']].handle_unsubscribe(pres)

    def _handle_unsubscribed(self, pres):
        self.roster[pres['to']][pres['from']].handle_unsubscribed(pres)

    def _handle_presence(self, presence):
        """Process incoming presence stanzas.

        Update the roster with presence information.
        """
        if not self.is_component and not presence['to'].bare:
            presence['to'] = self.boundjid

        self.event('presence', presence)
        self.event('presence_%s' % presence['type'], presence)

        # Check for changes in subscription state.
        if presence['type'] in ('subscribe', 'subscribed',
                                'unsubscribe', 'unsubscribed'):
            self.event('changed_subscription', presence)
            return
        elif not presence['type'] in ('available', 'unavailable') and \
             not presence['type'] in presence.showtypes:
            return

[docs]    def exception(self, exception):
        """Process any uncaught exceptions, notably
        :class:`~sleekxmpp.exceptions.IqError` and
        :class:`~sleekxmpp.exceptions.IqTimeout` exceptions.

        :param exception: An unhandled :class:`Exception` object.
        """
        if isinstance(exception, IqError):
            iq = exception.iq
            log.error('%s: %s', iq['error']['condition'],
                                iq['error']['text'])
            log.warning('You should catch IqError exceptions')
        elif isinstance(exception, IqTimeout):
            iq = exception.iq
            log.error('Request timed out: %s', iq)
            log.warning('You should catch IqTimeout exceptions')
        elif isinstance(exception, SyntaxError):
            # Hide stream parsing errors that occur when the
            # stream is disconnected (they've been handled, we
            # don't need to make a mess in the logs).
            pass
        else:
            log.exception(exception)


# Restore the old, lowercased name for backwards compatibility.


basexmpp = BaseXMPP

# To comply with PEP8, method names now use underscores.
# Deprecated method names are re-mapped for backwards compatibility.
BaseXMPP.registerPlugin = BaseXMPP.register_plugin
BaseXMPP.makeIq = BaseXMPP.make_iq
BaseXMPP.makeIqGet = BaseXMPP.make_iq_get
BaseXMPP.makeIqResult = BaseXMPP.make_iq_result
BaseXMPP.makeIqSet = BaseXMPP.make_iq_set
BaseXMPP.makeIqError = BaseXMPP.make_iq_error
BaseXMPP.makeIqQuery = BaseXMPP.make_iq_query
BaseXMPP.makeQueryRoster = BaseXMPP.make_query_roster
BaseXMPP.makeMessage = BaseXMPP.make_message
BaseXMPP.makePresence = BaseXMPP.make_presence
BaseXMPP.sendMessage = BaseXMPP.send_message
BaseXMPP.sendPresence = BaseXMPP.send_presence
BaseXMPP.sendPresenceSubscription = BaseXMPP.send_presence_subscription





          

      

      

    


    
        © Copyright 2011, Nathan Fritz, Lance Stout.
      Created using Sphinx 1.1.3.
    

 












  
     Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_images/arch_layers.png
XEP Plugins

ClientXMPP
ComponentXMPP
Stanza
Objects
BaseXMPP
XMLStream






_static/down.png





_static/comment.png





_modules/sleekxmpp/componentxmpp.html

    
      Navigation


      
        		
          index


        		
          modules |


        		1.0 Documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for sleekxmpp.componentxmpp

# -*- coding: utf-8 -*-
"""
    sleekxmpp.clientxmpp
    ~~~~~~~~~~~~~~~~~~~~

 This module provides XMPP functionality that
 is specific to external server component connections.

 Part of SleekXMPP: The Sleek XMPP Library

 :copyright: (c) 2011 Nathanael C. Fritz
 :license: MIT, see LICENSE for more details
"""

from __future__ import absolute_import

import logging
import sys
import hashlib

from sleekxmpp.basexmpp import BaseXMPP
from sleekxmpp.xmlstream import XMLStream
from sleekxmpp.xmlstream import ET
from sleekxmpp.xmlstream.matcher import MatchXPath
from sleekxmpp.xmlstream.handler import Callback

log = logging.getLogger(__name__)

[docs]class ComponentXMPP(BaseXMPP):

 """
 SleekXMPP's basic XMPP server component.

 Use only for good, not for evil.

 :param jid: The JID of the component.
 :param secret: The secret or password for the component.
 :param host: The server accepting the component.
 :param port: The port used to connect to the server.
 :param plugin_config: A dictionary of plugin configurations.
 :param plugin_whitelist: A list of approved plugins that
 will be loaded when calling
 :meth:`~sleekxmpp.basexmpp.BaseXMPP.register_plugins()`.
 :param use_jc_ns: Indicates if the ``'jabber:client'`` namespace
 should be used instead of the standard
 ``'jabber:component:accept'`` namespace.
 Defaults to ``False``.
 """

 def __init__(self, jid, secret, host=None, port=None,
 plugin_config={}, plugin_whitelist=[], use_jc_ns=False):
 if use_jc_ns:
 default_ns = 'jabber:client'
 else:
 default_ns = 'jabber:component:accept'
 BaseXMPP.__init__(self, jid, default_ns)

 self.auto_authorize = None
 self.stream_header = "<stream:stream %s %s to='%s'>" % (
 'xmlns="jabber:component:accept"',
 'xmlns:stream="%s"' % self.stream_ns,
 jid)
 self.stream_footer = "</stream:stream>"
 self.server_host = host
 self.server_port = port
 self.secret = secret

 self.plugin_config = plugin_config
 self.plugin_whitelist = plugin_whitelist
 self.is_component = True

 self.register_handler(
 Callback('Handshake',
 MatchXPath('{jabber:component:accept}handshake'),
 self._handle_handshake))
 self.add_event_handler('presence_probe',
 self._handle_probe)

[docs] def connect(self, host=None, port=None, use_ssl=False,
 use_tls=False, reattempt=True):
 """Connect to the server.

 Setting ``reattempt`` to ``True`` will cause connection attempts to
 be made every second until a successful connection is established.

 :param host: The name of the desired server for the connection.
 Defaults to :attr:`server_host`.
 :param port: Port to connect to on the server.
 Defauts to :attr:`server_port`.
 :param use_ssl: Flag indicating if SSL should be used by connecting
 directly to a port using SSL.
 :param use_tls: Flag indicating if TLS should be used, allowing for
 connecting to a port without using SSL immediately and
 later upgrading the connection.
 :param reattempt: Flag indicating if the socket should reconnect
 after disconnections.
 """
 if host is None:
 host = self.server_host
 if port is None:
 port = self.server_port

 self.server_name = self.boundjid.host

 if use_tls:
 log.info("XEP-0114 components can not use TLS")

 log.debug("Connecting to %s:%s", host, port)
 return XMLStream.connect(self, host=host, port=port,
 use_ssl=use_ssl,
 use_tls=False,
 reattempt=reattempt)

[docs] def incoming_filter(self, xml):
 """
 Pre-process incoming XML stanzas by converting any
 ``'jabber:client'`` namespaced elements to the component's
 default namespace.

 :param xml: The XML stanza to pre-process.
 """
 if xml.tag.startswith('{jabber:client}'):
 xml.tag = xml.tag.replace('jabber:client', self.default_ns)

 # The incoming_filter call is only made on top level stanza
 # elements. So we manually continue filtering on sub-elements.
 for sub in xml:
 self.incoming_filter(sub)

 return xml

[docs] def start_stream_handler(self, xml):
 """
 Once the streams are established, attempt to handshake
 with the server to be accepted as a component.

 :param xml: The incoming stream's root element.
 """
 BaseXMPP.start_stream_handler(self, xml)

 # Construct a hash of the stream ID and the component secret.
 sid = xml.get('id', '')
 pre_hash = '%s%s' % (sid, self.secret)
 if sys.version_info >= (3, 0):
 # Handle Unicode byte encoding in Python 3.
 pre_hash = bytes(pre_hash, 'utf-8')

 handshake = ET.Element('{jabber:component:accept}handshake')
 handshake.text = hashlib.sha1(pre_hash).hexdigest().lower()
 self.send_xml(handshake, now=True)

 def _handle_handshake(self, xml):
 """The handshake has been accepted.

 :param xml: The reply handshake stanza.
 """
 self.session_bind_event.set()
 self.session_started_event.set()
 self.event("session_bind", self.boundjid, direct=True)
 self.event("session_start")

 def _handle_probe(self, pres):
 self.roster[pres['to']][pres['from']].handle_probe(pres)

 © Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_modules/sleekxmpp/clientxmpp.html

 Navigation

 		
 index

 		
 modules |

 		1.0 Documentation »

 		Module code »

 Source code for sleekxmpp.clientxmpp

-*- coding: utf-8 -*-
"""
 sleekxmpp.clientxmpp
    ~~~~~~~~~~~~~~~~~~~~

    This module provides XMPP functionality that
    is specific to client connections.

    Part of SleekXMPP: The Sleek XMPP Library

    :copyright: (c) 2011 Nathanael C. Fritz
    :license: MIT, see LICENSE for more details
"""

from __future__ import absolute_import, unicode_literals

import logging

from sleekxmpp.stanza import StreamFeatures
from sleekxmpp.basexmpp import BaseXMPP
from sleekxmpp.exceptions import XMPPError
from sleekxmpp.xmlstream import XMLStream
from sleekxmpp.xmlstream.matcher import StanzaPath, MatchXPath
from sleekxmpp.xmlstream.handler import Callback

# Flag indicating if DNS SRV records are available for use.
try:
    import dns.resolver
except ImportError:
    DNSPYTHON = False
else:
    DNSPYTHON = True


log = logging.getLogger(__name__)


[docs]class ClientXMPP(BaseXMPP):

    """
    SleekXMPP's client class. (Use only for good, not for evil.)

    Typical use pattern:

    .. code-block:: python

        xmpp = ClientXMPP('user@server.tld/resource', 'password')
        # ... Register plugins and event handlers ...
        xmpp.connect()
        xmpp.process(block=False) # block=True will block the current
                                  # thread. By default, block=False

    :param jid: The JID of the XMPP user account.
    :param password: The password for the XMPP user account.
    :param ssl: **Deprecated.**
    :param plugin_config: A dictionary of plugin configurations.
    :param plugin_whitelist: A list of approved plugins that
                    will be loaded when calling
                    :meth:`~sleekxmpp.basexmpp.BaseXMPP.register_plugins()`.
    :param escape_quotes: **Deprecated.**
    """

    def __init__(self, jid, password, plugin_config={}, plugin_whitelist=[],
                 escape_quotes=True, sasl_mech=None, lang='en'):
        BaseXMPP.__init__(self, jid, 'jabber:client')

        self.escape_quotes = escape_quotes
        self.plugin_config = plugin_config
        self.plugin_whitelist = plugin_whitelist
        self.default_port = 5222
        self.default_lang = lang

        self.credentials = {}

        self.password = password

        self.stream_header = "<stream:stream to='%s' %s %s %s %s>" % (
                self.boundjid.host,
                "xmlns:stream='%s'" % self.stream_ns,
                "xmlns='%s'" % self.default_ns,
                "xml:lang='%s'" % self.default_lang,
                "version='1.0'")
        self.stream_footer = "</stream:stream>"

        self.features = set()
        self._stream_feature_handlers = {}
        self._stream_feature_order = []

        self.dns_service = 'xmpp-client'

        #TODO: Use stream state here
        self.authenticated = False
        self.sessionstarted = False
        self.bound = False
        self.bindfail = False

        self.add_event_handler('connected', self._reset_connection_state)
        self.add_event_handler('session_bind', self._handle_session_bind)

        self.register_stanza(StreamFeatures)

        self.register_handler(
                Callback('Stream Features',
                         MatchXPath('{%s}features' % self.stream_ns),
                         self._handle_stream_features))
        self.register_handler(
                Callback('Roster Update',
                         StanzaPath('iq@type=set/roster'),
                         self._handle_roster))

        # Setup default stream features
        self.register_plugin('feature_starttls')
        self.register_plugin('feature_bind')
        self.register_plugin('feature_session')
        self.register_plugin('feature_rosterver')
        self.register_plugin('feature_preapproval')
        self.register_plugin('feature_mechanisms')

        if sasl_mech:
            self['feature_mechanisms'].use_mech = sasl_mech

    @property
    def password(self):
        return self.credentials.get('password', '')

    @password.setter
    def password(self, value):
        self.credentials['password'] = value

[docs]    def connect(self, address=tuple(), reattempt=True,
                use_tls=True, use_ssl=False):
        """Connect to the XMPP server.

        When no address is given, a SRV lookup for the server will
        be attempted. If that fails, the server user in the JID
        will be used.

        :param address   -- A tuple containing the server's host and port.
        :param reattempt: If ``True``, repeat attempting to connect if an
                         error occurs. Defaults to ``True``.
        :param use_tls: Indicates if TLS should be used for the
                        connection. Defaults to ``True``.
        :param use_ssl: Indicates if the older SSL connection method
                        should be used. Defaults to ``False``.
        """
        self.session_started_event.clear()

        # If an address was provided, disable using DNS SRV lookup;
        # otherwise, use the domain from the client JID with the standard
        # XMPP client port and allow SRV lookup.
        if address:
            self.dns_service = None
        else:
            address = (self.boundjid.host, 5222)
            self.dns_service = 'xmpp-client'

        self._expected_server_name = self.boundjid.host

        return XMLStream.connect(self, address[0], address[1],
                                 use_tls=use_tls, use_ssl=use_ssl,
                                 reattempt=reattempt)


[docs]    def register_feature(self, name, handler, restart=False, order=5000):
        """Register a stream feature handler.

        :param name: The name of the stream feature.
        :param handler: The function to execute if the feature is received.
        :param restart: Indicates if feature processing should halt with
                        this feature. Defaults to ``False``.
        :param order: The relative ordering in which the feature should
                      be negotiated. Lower values will be attempted
                      earlier when available.
        """
        self._stream_feature_handlers[name] = (handler, restart)
        self._stream_feature_order.append((order, name))
        self._stream_feature_order.sort()


    def unregister_feature(self, name, order):
        if name in self._stream_feature_handlers:
            del self._stream_feature_handlers[name]
        self._stream_feature_order.remove((order, name))
        self._stream_feature_order.sort()

[docs]    def update_roster(self, jid, **kwargs):
        """Add or change a roster item.

        :param jid: The JID of the entry to modify.
        :param name: The user's nickname for this JID.
        :param subscription: The subscription status. May be one of
                             ``'to'``, ``'from'``, ``'both'``, or
                             ``'none'``. If set to ``'remove'``,
                             the entry will be deleted.
        :param groups: The roster groups that contain this item.
        :param block: Specify if the roster request will block
                      until a response is received, or a timeout
                      occurs. Defaults to ``True``.
        :param timeout: The length of time (in seconds) to wait
                        for a response before continuing if blocking
                        is used. Defaults to
            :attr:`~sleekxmpp.xmlstream.xmlstream.XMLStream.response_timeout`.
        :param callback: Optional reference to a stream handler function.
                         Will be executed when the roster is received.
                         Implies ``block=False``.
        """
        current = self.client_roster[jid]

        name = kwargs.get('name', current['name'])
        subscription = kwargs.get('subscription', current['subscription'])
        groups = kwargs.get('groups', current['groups'])

        block = kwargs.get('block', True)
        timeout = kwargs.get('timeout', None)
        callback = kwargs.get('callback', None)

        return self.client_roster.update(jid, name, subscription, groups,
                                         block, timeout, callback)


[docs]    def del_roster_item(self, jid):
        """Remove an item from the roster.

        This is done by setting its subscription status to ``'remove'``.

        :param jid: The JID of the item to remove.
        """
        return self.client_roster.remove(jid)


[docs]    def get_roster(self, block=True, timeout=None, callback=None):
        """Request the roster from the server.

        :param block: Specify if the roster request will block until a
                      response is received, or a timeout occurs.
                      Defaults to ``True``.
        :param timeout: The length of time (in seconds) to wait for a response
                        before continuing if blocking is used.
                        Defaults to
            :attr:`~sleekxmpp.xmlstream.xmlstream.XMLStream.response_timeout`.
        :param callback: Optional reference to a stream handler function. Will
                         be executed when the roster is received.
                         Implies ``block=False``.
        """
        iq = self.Iq()
        iq['type'] = 'get'
        iq.enable('roster')
        if 'rosterver' in self.features:
            iq['roster']['ver'] = self.client_roster.version

        if not block and callback is None:
            callback = lambda resp: self._handle_roster(resp)

        response = iq.send(block, timeout, callback)
        self.event('roster_received', response)

        if block:
            self._handle_roster(response)
            return response


    def _reset_connection_state(self, event=None):
        #TODO: Use stream state here
        self.authenticated = False
        self.sessionstarted = False
        self.bound = False
        self.bindfail = False
        self.features = set()

    def _handle_stream_features(self, features):
        """Process the received stream features.

        :param features: The features stanza.
        """
        for order, name in self._stream_feature_order:
            if name in features['features']:
                handler, restart = self._stream_feature_handlers[name]
                if handler(features) and restart:
                    # Don't continue if the feature requires
                    # restarting the XML stream.
                    return True
        log.debug('Finished processing stream features.')
        self.event('stream_negotiated')

    def _handle_roster(self, iq):
        """Update the roster after receiving a roster stanza.

        :param iq: The roster stanza.
        """
        if iq['type'] == 'set':
            if iq['from'].bare and iq['from'].bare != self.boundjid.bare:
                raise XMPPError(condition='service-unavailable')

        roster = self.client_roster
        if iq['roster']['ver']:
            roster.version = iq['roster']['ver']
        items = iq['roster']['items']

        valid_subscriptions = ('to', 'from', 'both', 'none', 'remove')
        for jid, item in items.items():
            if item['subscription'] in valid_subscriptions:
                roster[jid]['name'] = item['name']
                roster[jid]['groups'] = item['groups']
                roster[jid]['from'] = item['subscription'] in ('from', 'both')
                roster[jid]['to'] = item['subscription'] in ('to', 'both')
                roster[jid]['pending_out'] = (item['ask'] == 'subscribe')

                roster[jid].save(remove=(item['subscription'] == 'remove'))

        self.event("roster_update", iq)
        if iq['type'] == 'set':
            resp = self.Iq(stype='result',
                           sto=iq['from'],
                           sid=iq['id'])
            resp.enable('roster')
            resp.send()

    def _handle_session_bind(self, jid):
        """Set the client roster to the JID set by the server.

        :param :class:`sleekxmpp.xmlstream.jid.JID` jid: The bound JID as
            dictated by the server. The same as :attr:`boundjid`.
        """
        self.client_roster = self.roster[jid]


# To comply with PEP8, method names now use underscores.
# Deprecated method names are re-mapped for backwards compatibility.

ClientXMPP.updateRoster = ClientXMPP.update_roster
ClientXMPP.delRosterItem = ClientXMPP.del_roster_item
ClientXMPP.getRoster = ClientXMPP.get_roster
ClientXMPP.registerFeature = ClientXMPP.register_feature





          

      

      

    


    
        © Copyright 2011, Nathan Fritz, Lance Stout.
      Created using Sphinx 1.1.3.
    

 












  
     Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_modules/sleekxmpp/xmlstream/matcher/xpath.html

    
      Navigation


      
        		
          index


        		
          modules |


        		1.0 Documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for sleekxmpp.xmlstream.matcher.xpath

# -*- coding: utf-8 -*-
"""
    sleekxmpp.xmlstream.matcher.xpath
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 Part of SleekXMPP: The Sleek XMPP Library

 :copyright: (c) 2011 Nathanael C. Fritz
 :license: MIT, see LICENSE for more details
"""

from sleekxmpp.xmlstream.stanzabase import ET
from sleekxmpp.xmlstream.matcher.base import MatcherBase

Flag indicating if the builtin XPath matcher should be used, which
uses namespaces, or a custom matcher that ignores namespaces.
Changing this will affect ALL XPath matchers.
IGNORE_NS = False

[docs]class MatchXPath(MatcherBase):

 """
 The XPath matcher selects stanzas whose XML contents matches a given
 XPath expression.

 .. warning::

 Using this matcher may not produce expected behavior when using
 attribute selectors. For Python 2.6 and 3.1, the ElementTree
 :meth:`~xml.etree.ElementTree.Element.find()` method does
 not support the use of attribute selectors. If you need to
 support Python 2.6 or 3.1, it might be more useful to use a
 :class:`~sleekxmpp.xmlstream.matcher.stanzapath.StanzaPath` matcher.

 If the value of :data:`IGNORE_NS` is set to ``True``, then XPath
 expressions will be matched without using namespaces.
 """

[docs] def match(self, xml):
 """
 Compare a stanza's XML contents to an XPath expression.

 If the value of :data:`IGNORE_NS` is set to ``True``, then XPath
 expressions will be matched without using namespaces.

 .. warning::

 In Python 2.6 and 3.1 the ElementTree
 :meth:`~xml.etree.ElementTree.Element.find()` method does not
 support attribute selectors in the XPath expression.

 :param xml: The :class:`~sleekxmpp.xmlstream.stanzabase.ElementBase`
 stanza to compare against.
 """
 if hasattr(xml, 'xml'):
 xml = xml.xml
 x = ET.Element('x')
 x.append(xml)

 if not IGNORE_NS:
 # Use builtin, namespace respecting, XPath matcher.
 if x.find(self._criteria) is not None:
 return True
 return False
 else:
 # Remove namespaces from the XPath expression.
 criteria = []
 for ns_block in self._criteria.split('{'):
 criteria.extend(ns_block.split('}')[-1].split('/'))

 # Walk the XPath expression.
 xml = x
 for tag in criteria:
 if not tag:
 # Skip empty tag name artifacts from the cleanup phase.
 continue

 children = [c.tag.split('}')[-1] for c in xml]
 try:
 index = children.index(tag)
 except ValueError:
 return False
 xml = list(xml)[index]
 return True

 © Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/ajax-loader.gif

_modules/sleekxmpp/xmlstream/matcher/xmlmask.html

 Navigation

 		
 index

 		
 modules |

 		1.0 Documentation »

 		Module code »

 Source code for sleekxmpp.xmlstream.matcher.xmlmask

"""
 SleekXMPP: The Sleek XMPP Library
 Copyright (C) 2010 Nathanael C. Fritz
 This file is part of SleekXMPP.

 See the file LICENSE for copying permission.
"""

import logging

from xml.parsers.expat import ExpatError

from sleekxmpp.xmlstream.stanzabase import ET
from sleekxmpp.xmlstream.matcher.base import MatcherBase

Flag indicating if the builtin XPath matcher should be used, which
uses namespaces, or a custom matcher that ignores namespaces.
Changing this will affect ALL XMLMask matchers.
IGNORE_NS = False

log = logging.getLogger(__name__)

[docs]class MatchXMLMask(MatcherBase):

 """
 The XMLMask matcher selects stanzas whose XML matches a given
 XML pattern, or mask. For example, message stanzas with body elements
 could be matched using the mask:

 .. code-block:: xml

 <message xmlns="jabber:client"><body /></message>

 Use of XMLMask is discouraged, and
 :class:`~sleekxmpp.xmlstream.matcher.xpath.MatchXPath` or
 :class:`~sleekxmpp.xmlstream.matcher.stanzapath.StanzaPath`
 should be used instead.

 The use of namespaces in the mask comparison is controlled by
 ``IGNORE_NS``. Setting ``IGNORE_NS`` to ``True`` will disable namespace
 based matching for ALL XMLMask matchers.

 :param criteria: Either an :class:`~xml.etree.ElementTree.Element` XML
 object or XML string to use as a mask.
 """

 def __init__(self, criteria):
 MatcherBase.__init__(self, criteria)
 if isinstance(criteria, str):
 self._criteria = ET.fromstring(self._criteria)
 self.default_ns = 'jabber:client'

[docs] def setDefaultNS(self, ns):
 """Set the default namespace to use during comparisons.

 :param ns: The new namespace to use as the default.
 """
 self.default_ns = ns

[docs] def match(self, xml):
 """Compare a stanza object or XML object against the stored XML mask.

 Overrides MatcherBase.match.

 :param xml: The stanza object or XML object to compare against.
 """
 if hasattr(xml, 'xml'):
 xml = xml.xml
 return self._mask_cmp(xml, self._criteria, True)

 def _mask_cmp(self, source, mask, use_ns=False, default_ns='__no_ns__'):
 """Compare an XML object against an XML mask.

 :param source: The :class:`~xml.etree.ElementTree.Element` XML object
 to compare against the mask.
 :param mask: The :class:`~xml.etree.ElementTree.Element` XML object
 serving as the mask.
 :param use_ns: Indicates if namespaces should be respected during
 the comparison.
 :default_ns: The default namespace to apply to elements that
 do not have a specified namespace.
 Defaults to ``"__no_ns__"``.
 """
 use_ns = not IGNORE_NS

 if source is None:
 # If the element was not found. May happend during recursive calls.
 return False

 # Convert the mask to an XML object if it is a string.
 if not hasattr(mask, 'attrib'):
 try:
 mask = ET.fromstring(mask)
 except ExpatError:
 log.warning("Expat error: %s\nIn parsing: %s", '', mask)
 if not use_ns:
 # Compare the element without using namespaces.
 source_tag = source.tag.split('}', 1)[-1]
 mask_tag = mask.tag.split('}', 1)[-1]
 if source_tag != mask_tag:
 return False
 else:
 # Compare the element using namespaces
 mask_ns_tag = "{%s}%s" % (self.default_ns, mask.tag)
 if source.tag not in [mask.tag, mask_ns_tag]:
 return False

 # If the mask includes text, compare it.
 if mask.text and source.text and \
 source.text.strip() != mask.text.strip():
 return False

 # Compare attributes. The stanza must include the attributes
 # defined by the mask, but may include others.
 for name, value in mask.attrib.items():
 if source.attrib.get(name, "__None__") != value:
 return False

 # Recursively check subelements.
 matched_elements = {}
 for subelement in mask:
 if use_ns:
 matched = False
 for other in source.findall(subelement.tag):
 matched_elements[other] = False
 if self._mask_cmp(other, subelement, use_ns):
 if not matched_elements.get(other, False):
 matched_elements[other] = True
 matched = True
 if not matched:
 return False
 else:
 if not self._mask_cmp(self._get_child(source, subelement.tag),
 subelement, use_ns):
 return False

 # Everything matches.
 return True

 def _get_child(self, xml, tag):
 """Return a child element given its tag, ignoring namespace values.

 Returns ``None`` if the child was not found.

 :param xml: The :class:`~xml.etree.ElementTree.Element` XML object
 to search for the given child tag.
 :param tag: The name of the subelement to find.
 """
 tag = tag.split('}')[-1]
 try:
 children = [c.tag.split('}')[-1] for c in xml]
 index = children.index(tag)
 except ValueError:
 return None
 return list(xml)[index]

 © Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/file.png

_static/noise_dk.png

_static/down-pressed.png

_modules/sleekxmpp/exceptions.html

 Navigation

 		
 index

 		
 modules |

 		1.0 Documentation »

 		Module code »

 Source code for sleekxmpp.exceptions

-*- coding: utf-8 -*-
"""
 sleekxmpp.exceptions
    ~~~~~~~~~~~~~~~~~~~~

    Part of SleekXMPP: The Sleek XMPP Library

    :copyright: (c) 2011 Nathanael C. Fritz
    :license: MIT, see LICENSE for more details
"""


[docs]class XMPPError(Exception):

    """
    A generic exception that may be raised while processing an XMPP stanza
    to indicate that an error response stanza should be sent.

    The exception method for stanza objects extending
    :class:`~sleekxmpp.stanza.rootstanza.RootStanza` will create an error
    stanza and initialize any additional substanzas using the extension
    information included in the exception.

    Meant for use in SleekXMPP plugins and applications using SleekXMPP.

    Extension information can be included to add additional XML elements
    to the generated error stanza.

    :param condition: The XMPP defined error condition.
                      Defaults to ``'undefined-condition'``.
    :param text: Human readable text describing the error.
    :param etype: The XMPP error type, such as ``'cancel'`` or ``'modify'``.
                  Defaults to ``'cancel'``.
    :param extension: Tag name of the extension's XML content.
    :param extension_ns: XML namespace of the extensions' XML content.
    :param extension_args: Content and attributes for the extension
                           element. Same as the additional arguments to
                           the :class:`~xml.etree.ElementTree.Element`
                           constructor.
    :param clear: Indicates if the stanza's contents should be
                  removed before replying with an error.
                  Defaults to ``True``.
    """

    def __init__(self, condition='undefined-condition', text=None,
                etype='cancel', extension=None, extension_ns=None,
                extension_args=None, clear=True):
        if extension_args is None:
            extension_args = {}

        self.condition = condition
        self.text = text
        self.etype = etype
        self.clear = clear
        self.extension = extension
        self.extension_ns = extension_ns
        self.extension_args = extension_args



[docs]class IqTimeout(XMPPError):

    """
    An exception which indicates that an IQ request response has not been
    received within the alloted time window.
    """

    def __init__(self, iq):
        super(IqTimeout, self).__init__(
                condition='remote-server-timeout',
                etype='cancel')

        #: The :class:`~sleekxmpp.stanza.iq.Iq` stanza whose response
        #: did not arrive before the timeout expired.
        self.iq = iq



[docs]class IqError(XMPPError):

    """
    An exception raised when an Iq stanza of type 'error' is received
    after making a blocking send call.
    """

    def __init__(self, iq):
        super(IqError, self).__init__(
                condition=iq['error']['condition'],
                text=iq['error']['text'],
                etype=iq['error']['type'])

        #: The :class:`~sleekxmpp.stanza.iq.Iq` error result stanza.
        self.iq = iq






          

      

      

    


    
        © Copyright 2011, Nathan Fritz, Lance Stout.
      Created using Sphinx 1.1.3.
    

 












  
     Brought to you by Read the Docs
    
      
        		latest


      
    


  









  


_modules/sleekxmpp/xmlstream/tostring.html

    
      Navigation


      
        		
          index


        		
          modules |


        		1.0 Documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for sleekxmpp.xmlstream.tostring

# -*- coding: utf-8 -*-
"""
    sleekxmpp.xmlstream.tostring
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 This module converts XML objects into Unicode strings and
 intelligently includes namespaces only when necessary to
 keep the output readable.

 Part of SleekXMPP: The Sleek XMPP Library

 :copyright: (c) 2011 Nathanael C. Fritz
 :license: MIT, see LICENSE for more details
"""

from __future__ import unicode_literals

import sys

if sys.version_info < (3, 0):
 import types

XML_NS = 'http://www.w3.org/XML/1998/namespace'

[docs]def tostring(xml=None, xmlns='', stream=None,
 outbuffer='', top_level=False, open_only=False):
 """Serialize an XML object to a Unicode string.

 If an outer xmlns is provided using ``xmlns``, then the current element's
 namespace will not be included if it matches the outer namespace. An
 exception is made for elements that have an attached stream, and appear
 at the stream root.

 :param XML xml: The XML object to serialize.
 :param string xmlns: Optional namespace of an element wrapping the XML
 object.
 :param stream: The XML stream that generated the XML object.
 :param string outbuffer: Optional buffer for storing serializations
 during recursive calls.
 :param bool top_level: Indicates that the element is the outermost
 element.

 :type xml: :py:class:`~xml.etree.ElementTree.Element`
 :type stream: :class:`~sleekxmpp.xmlstream.xmlstream.XMLStream`

 :rtype: Unicode string
 """
 # Add previous results to the start of the output.
 output = [outbuffer]

 # Extract the element's tag name.
 tag_name = xml.tag.split('}', 1)[-1]

 # Extract the element's namespace if it is defined.
 if '}' in xml.tag:
 tag_xmlns = xml.tag.split('}', 1)[0][1:]
 else:
 tag_xmlns = ''

 default_ns = ''
 stream_ns = ''
 use_cdata = False
 if stream:
 default_ns = stream.default_ns
 stream_ns = stream.stream_ns
 use_cdata = stream.use_cdata

 # Output the tag name and derived namespace of the element.
 namespace = ''
 if tag_xmlns:
 if top_level and tag_xmlns not in [default_ns, xmlns, stream_ns] \
 or not top_level and tag_xmlns != xmlns:
 namespace = ' xmlns="%s"' % tag_xmlns
 if stream and tag_xmlns in stream.namespace_map:
 mapped_namespace = stream.namespace_map[tag_xmlns]
 if mapped_namespace:
 tag_name = "%s:%s" % (mapped_namespace, tag_name)
 output.append("<%s" % tag_name)
 output.append(namespace)

 # Output escaped attribute values.
 for attrib, value in xml.attrib.items():
 value = escape(value, use_cdata)
 if '}' not in attrib:
 output.append(' %s="%s"' % (attrib, value))
 else:
 attrib_ns = attrib.split('}')[0][1:]
 attrib = attrib.split('}')[1]
 if stream and attrib_ns in stream.namespace_map:
 mapped_ns = stream.namespace_map[attrib_ns]
 if mapped_ns:
 output.append(' %s:%s="%s"' % (mapped_ns,
 attrib,
 value))
 elif attrib_ns == XML_NS:
 output.append(' xml:%s="%s"' % (attrib, value))

 if open_only:
 # Only output the opening tag, regardless of content.
 output.append(">")
 return ''.join(output)

 if len(xml) or xml.text:
 # If there are additional child elements to serialize.
 output.append(">")
 if xml.text:
 output.append(escape(xml.text, use_cdata))
 if len(xml):
 for child in xml:
 output.append(tostring(child, tag_xmlns, stream))
 output.append("</%s>" % tag_name)
 elif xml.text:
 # If we only have text content.
 output.append(">%s</%s>" % (escape(xml.text, use_cdata), tag_name))
 else:
 # Empty element.
 output.append(" />")
 if xml.tail:
 # If there is additional text after the element.
 output.append(escape(xml.tail, use_cdata))
 return ''.join(output)

def escape(text, use_cdata=False):
 """Convert special characters in XML to escape sequences.

 :param string text: The XML text to convert.
 :rtype: Unicode string
 """
 if sys.version_info < (3, 0):
 if type(text) != types.UnicodeType:
 text = unicode(text, 'utf-8', 'ignore')

 escapes = {'&': '&',
 '<': '<',
 '>': '>',
 "'": ''',
 '"': '"'}

 if not use_cdata:
 text = list(text)
 for i, c in enumerate(text):
 text[i] = escapes.get(c, c)
 return ''.join(text)
 else:
 escape_needed = False
 for c in text:
 if c in escapes:
 escape_needed = True
 break
 if escape_needed:
 escaped = map(lambda x : "<![CDATA[%s]]>" % x, text.split("]]>"))
 return "<![CDATA[]]]><![CDATA[]>]]>".join(escaped)
 return text

 © Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-bright.png

_modules/sleekxmpp/xmlstream/jid.html

 Navigation

 		
 index

 		
 modules |

 		1.0 Documentation »

 		Module code »

 Source code for sleekxmpp.xmlstream.jid

import logging

logging.warning('Deprecated: sleekxmpp.xmlstream.jid is moving to sleekxmpp.jid')

from sleekxmpp.jid import JID

 © Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_modules/sleekxmpp/xmlstream/handler/base.html

 Navigation

 		
 index

 		
 modules |

 		1.0 Documentation »

 		Module code »

 Source code for sleekxmpp.xmlstream.handler.base

-*- coding: utf-8 -*-
"""
 sleekxmpp.xmlstream.handler.base
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    Part of SleekXMPP: The Sleek XMPP Library

    :copyright: (c) 2011 Nathanael C. Fritz
    :license: MIT, see LICENSE for more details
"""

import weakref


[docs]class BaseHandler(object):

    """
    Base class for stream handlers. Stream handlers are matched with
    incoming stanzas so that the stanza may be processed in some way.
    Stanzas may be matched with multiple handlers.

    Handler execution may take place in two phases: during the incoming
    stream processing, and in the main event loop. The :meth:`prerun()`
    method is executed in the first case, and :meth:`run()` is called
    during the second.

    :param string name: The name of the handler.
    :param matcher: A :class:`~sleekxmpp.xmlstream.matcher.base.MatcherBase`
                    derived object that will be used to determine if a
                    stanza should be accepted by this handler.
    :param stream: The :class:`~sleekxmpp.xmlstream.xmlstream.XMLStream`
                    instance that the handle will respond to.
    """

    def __init__(self, name, matcher, stream=None):
        #: The name of the handler
        self.name = name

        #: The XML stream this handler is assigned to
        self.stream = None
        if stream is not None:
            self.stream = weakref.ref(stream)
            stream.register_handler(self)

        self._destroy = False
        self._payload = None
        self._matcher = matcher

[docs]    def match(self, xml):
        """Compare a stanza or XML object with the handler's matcher.

        :param xml: An XML or
            :class:`~sleekxmpp.xmlstream.stanzabase.ElementBase` object
        """
        return self._matcher.match(xml)


[docs]    def prerun(self, payload):
        """Prepare the handler for execution while the XML
        stream is being processed.

        :param payload: A :class:`~sleekxmpp.xmlstream.stanzabase.ElementBase`
                        object.
        """
        self._payload = payload


[docs]    def run(self, payload):
        """Execute the handler after XML stream processing and during the
        main event loop.

        :param payload: A :class:`~sleekxmpp.xmlstream.stanzabase.ElementBase`
                        object.
        """
        self._payload = payload


[docs]    def check_delete(self):
        """Check if the handler should be removed from the list
        of stream handlers.
        """
        return self._destroy


# To comply with PEP8, method names now use underscores.
# Deprecated method names are re-mapped for backwards compatibility.


BaseHandler.checkDelete = BaseHandler.check_delete





          

      

      

    


    
        © Copyright 2011, Nathan Fritz, Lance Stout.
      Created using Sphinx 1.1.3.
    

 












  
     Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_modules/sleekxmpp/xmlstream/matcher/id.html

    
      Navigation


      
        		
          index


        		
          modules |


        		1.0 Documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for sleekxmpp.xmlstream.matcher.id

# -*- coding: utf-8 -*-
"""
    sleekxmpp.xmlstream.matcher.id
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 Part of SleekXMPP: The Sleek XMPP Library

 :copyright: (c) 2011 Nathanael C. Fritz
 :license: MIT, see LICENSE for more details
"""

from sleekxmpp.xmlstream.matcher.base import MatcherBase

[docs]class MatcherId(MatcherBase):

 """
 The ID matcher selects stanzas that have the same stanza 'id'
 interface value as the desired ID.
 """

[docs] def match(self, xml):
 """Compare the given stanza's ``'id'`` attribute to the stored
 ``id`` value.

 :param xml: The :class:`~sleekxmpp.xmlstream.stanzabase.ElementBase`
 stanza to compare against.
 """
 return xml['id'] == self._criteria

 © Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_modules/sleekxmpp/xmlstream/handler/callback.html

 Navigation

 		
 index

 		
 modules |

 		1.0 Documentation »

 		Module code »

 Source code for sleekxmpp.xmlstream.handler.callback

-*- coding: utf-8 -*-
"""
 sleekxmpp.xmlstream.handler.callback
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    Part of SleekXMPP: The Sleek XMPP Library

    :copyright: (c) 2011 Nathanael C. Fritz
    :license: MIT, see LICENSE for more details
"""

from sleekxmpp.xmlstream.handler.base import BaseHandler


[docs]class Callback(BaseHandler):

    """
    The Callback handler will execute a callback function with
    matched stanzas.

    The handler may execute the callback either during stream
    processing or during the main event loop.

    Callback functions are all executed in the same thread, so be aware if
    you are executing functions that will block for extended periods of
    time. Typically, you should signal your own events using the SleekXMPP
    object's :meth:`~sleekxmpp.xmlstream.xmlstream.XMLStream.event()`
    method to pass the stanza off to a threaded event handler for further
    processing.


    :param string name: The name of the handler.
    :param matcher: A :class:`~sleekxmpp.xmlstream.matcher.base.MatcherBase`
                    derived object for matching stanza objects.
    :param pointer: The function to execute during callback.
    :param bool thread: **DEPRECATED.** Remains only for
                        backwards compatibility.
    :param bool once: Indicates if the handler should be used only
                      once. Defaults to False.
    :param bool instream: Indicates if the callback should be executed
                          during stream processing instead of in the
                          main event loop.
    :param stream: The :class:`~sleekxmpp.xmlstream.xmlstream.XMLStream`
                   instance this handler should monitor.
    """

    def __init__(self, name, matcher, pointer, thread=False,
                 once=False, instream=False, stream=None):
        BaseHandler.__init__(self, name, matcher, stream)
        self._pointer = pointer
        self._once = once
        self._instream = instream

[docs]    def prerun(self, payload):
        """Execute the callback during stream processing, if
        the callback was created with ``instream=True``.

        :param payload: The matched
            :class:`~sleekxmpp.xmlstream.stanzabase.ElementBase` object.
        """
        if self._once:
            self._destroy = True
        if self._instream:
            self.run(payload, True)


[docs]    def run(self, payload, instream=False):
        """Execute the callback function with the matched stanza payload.

        :param payload: The matched
            :class:`~sleekxmpp.xmlstream.stanzabase.ElementBase` object.
        :param bool instream: Force the handler to execute during stream
                              processing. This should only be used by
                              :meth:`prerun()`. Defaults to ``False``.
        """
        if not self._instream or instream:
            self._pointer(payload)
            if self._once:
                self._destroy = True
                del self._pointer







          

      

      

    


    
        © Copyright 2011, Nathan Fritz, Lance Stout.
      Created using Sphinx 1.1.3.
    

 












  
     Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_static/up.png






license.html

    
      Navigation


      
        		
          index


        		
          modules |


        		
          previous |


        		1.0 Documentation »

 
      


    


    
      
          
            
  
License (MIT)


Copyright (c) 2010 Nathanael C. Fritz


Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:


The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.


THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.



Licenses of Bundled Third Party Code



dateutil - Extensions to the standard python 2.3+ datetime module.


Copyright (c) 2003-2011 - Gustavo Niemeyer <gustavo@niemeyer.net>


All rights reserved.


Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:




		Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.


		Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.


		Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.









THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.





fixed_datetime


Copyright (c) 2008, Red Innovation Ltd., Finland
All rights reserved.


Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:




		Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.


		Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.


		Neither the name of Red Innovation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.









THIS SOFTWARE IS PROVIDED BY RED INNOVATION ``AS IS’’ AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RED INNOVATION BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.





OrderedDict - A port of the Python 2.7+ OrderedDict to Python 2.6


Copyright (c) 2009 Raymond Hettinger


Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files
(the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:



The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.


THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.









SUELTA – A PURE-PYTHON SASL CLIENT LIBRARY


This software is subject to “The MIT License”


Copyright 2004-2013 David Alan Cridland


Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:


The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.


THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.





python-gnupg: A Python wrapper for the GNU Privacy Guard


Copyright (c) 2008-2012 by Vinay Sajip.
All rights reserved.


Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:




		Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.


		Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.


		The name(s) of the copyright holder(s) may not be used to endorse or
promote products derived from this software without specific prior
written permission.









THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.





socksipy: A Python SOCKS client module.


Copyright 2006 Dan-Haim. All rights reserved.


Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this



list of conditions and the following disclaimer.




		Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.


		Neither the name of Dan Haim nor the names of his contributors may be used
to endorse or promote products derived from this software without specific
prior written permission.





THIS SOFTWARE IS PROVIDED BY DAN HAIM “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL DAN HAIM OR HIS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMANGE.










          

      

      

    


    
        © Copyright 2011, Nathan Fritz, Lance Stout.
      Created using Sphinx 1.1.3.
    

 












  
     Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_modules/sleekxmpp/xmlstream/xmlstream.html

    
      Navigation


      
        		
          index


        		
          modules |


        		1.0 Documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for sleekxmpp.xmlstream.xmlstream

"""
    sleekxmpp.xmlstream.xmlstream
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 This module provides the module for creating and
 interacting with generic XML streams, along with
 the necessary eventing infrastructure.

 Part of SleekXMPP: The Sleek XMPP Library

 :copyright: (c) 2011 Nathanael C. Fritz
 :license: MIT, see LICENSE for more details
"""

from __future__ import with_statement, unicode_literals

import base64
import copy
import logging
import signal
import socket as Socket
import ssl
import sys
import threading
import time
import random
import weakref
import uuid

from xml.parsers.expat import ExpatError

import sleekxmpp
from sleekxmpp.util import Queue, QueueEmpty
from sleekxmpp.thirdparty.statemachine import StateMachine
from sleekxmpp.xmlstream import Scheduler, tostring, cert
from sleekxmpp.xmlstream.stanzabase import StanzaBase, ET, ElementBase
from sleekxmpp.xmlstream.handler import Waiter, XMLCallback
from sleekxmpp.xmlstream.matcher import MatchXMLMask
from sleekxmpp.xmlstream.resolver import resolve, default_resolver

In Python 2.x, file socket objects are broken. A patched socket
wrapper is provided for this case in filesocket.py.
if sys.version_info < (3, 0):
 from sleekxmpp.xmlstream.filesocket import FileSocket, Socket26

#: The time in seconds to wait before timing out waiting for response stanzas.
RESPONSE_TIMEOUT = 30

#: The time in seconds to wait for events from the event queue, and also the
#: time between checks for the process stop signal.
WAIT_TIMEOUT = 0.1

#: The number of threads to use to handle XML stream events. This is not the
#: same as the number of custom event handling threads.
#: :data:`HANDLER_THREADS` must be at least 1. For Python implementations
#: with a GIL, this should be left at 1, but for implemetnations without
#: a GIL increasing this value can provide better performance.
HANDLER_THREADS = 1

#: The time in seconds to delay between attempts to resend data
#: after an SSL error.
SSL_RETRY_DELAY = 0.5

#: The maximum number of times to attempt resending data due to
#: an SSL error.
SSL_RETRY_MAX = 10

#: Maximum time to delay between connection attempts is one hour.
RECONNECT_MAX_DELAY = 600

#: Maximum number of attempts to connect to the server before quitting
#: and raising a 'connect_failed' event. Setting this to ``None`` will
#: allow infinite reconnection attempts, and using ``0`` will disable
#: reconnections. Defaults to ``None``.
RECONNECT_MAX_ATTEMPTS = None

log = logging.getLogger(__name__)

[docs]class RestartStream(Exception):
 """
 Exception to restart stream processing, including
 resending the stream header.
 """

[docs]class XMLStream(object):
 """
 An XML stream connection manager and event dispatcher.

 The XMLStream class abstracts away the issues of establishing a
 connection with a server and sending and receiving XML "stanzas".
 A stanza is a complete XML element that is a direct child of a root
 document element. Two streams are used, one for each communication
 direction, over the same socket. Once the connection is closed, both
 streams should be complete and valid XML documents.

 Three types of events are provided to manage the stream:
 :Stream: Triggered based on received stanzas, similar in concept
 to events in a SAX XML parser.
 :Custom: Triggered manually.
 :Scheduled: Triggered based on time delays.

 Typically, stanzas are first processed by a stream event handler which
 will then trigger custom events to continue further processing,
 especially since custom event handlers may run in individual threads.

 :param socket: Use an existing socket for the stream. Defaults to
 ``None`` to generate a new socket.
 :param string host: The name of the target server.
 :param int port: The port to use for the connection. Defaults to 0.
 """

 def __init__(self, socket=None, host='', port=0):
 #: Most XMPP servers support TLSv1, but OpenFire in particular
 #: does not work well with it. For OpenFire, set
 #: :attr:`ssl_version` to use ``SSLv23``::
 #:
 #: import ssl
 #: xmpp.ssl_version = ssl.PROTOCOL_SSLv23
 self.ssl_version = ssl.PROTOCOL_TLSv1

 #: Path to a file containing certificates for verifying the
 #: server SSL certificate. A non-``None`` value will trigger
 #: certificate checking.
 #:
 #: .. note::
 #:
 #: On Mac OS X, certificates in the system keyring will
 #: be consulted, even if they are not in the provided file.
 self.ca_certs = None

 #: Path to a file containing a client certificate to use for
 #: authenticating via SASL EXTERNAL. If set, there must also
 #: be a corresponding `:attr:keyfile` value.
 self.certfile = None

 #: Path to a file containing the private key for the selected
 #: client certificate to use for authenticating via SASL EXTERNAL.
 self.keyfile = None

 self._der_cert = None

 #: The time in seconds to wait for events from the event queue,
 #: and also the time between checks for the process stop signal.
 self.wait_timeout = WAIT_TIMEOUT

 #: The time in seconds to wait before timing out waiting
 #: for response stanzas.
 self.response_timeout = RESPONSE_TIMEOUT

 #: The current amount to time to delay attempting to reconnect.
 #: This value doubles (with some jitter) with each failed
 #: connection attempt up to :attr:`reconnect_max_delay` seconds.
 self.reconnect_delay = None

 #: Maximum time to delay between connection attempts is one hour.
 self.reconnect_max_delay = RECONNECT_MAX_DELAY

 #: Maximum number of attempts to connect to the server before
 #: quitting and raising a 'connect_failed' event. Setting to
 #: ``None`` allows infinite reattempts, while setting it to ``0``
 #: will disable reconnection attempts. Defaults to ``None``.
 self.reconnect_max_attempts = RECONNECT_MAX_ATTEMPTS

 #: The time in seconds to delay between attempts to resend data
 #: after an SSL error.
 self.ssl_retry_max = SSL_RETRY_MAX

 #: The maximum number of times to attempt resending data due to
 #: an SSL error.
 self.ssl_retry_delay = SSL_RETRY_DELAY

 #: The connection state machine tracks if the stream is
 #: ``'connected'`` or ``'disconnected'``.
 self.state = StateMachine(('disconnected', 'connected'))
 self.state._set_state('disconnected')

 #: The default port to return when querying DNS records.
 self.default_port = int(port)

 #: The domain to try when querying DNS records.
 self.default_domain = ''

 #: The expected name of the server, for validation.
 self._expected_server_name = ''
 self._service_name = ''

 #: The desired, or actual, address of the connected server.
 self.address = (host, int(port))

 #: A file-like wrapper for the socket for use with the
 #: :mod:`~xml.etree.ElementTree` module.
 self.filesocket = None
 self.set_socket(socket)

 if sys.version_info < (3, 0):
 self.socket_class = Socket26
 else:
 self.socket_class = Socket.socket

 #: Enable connecting to the server directly over SSL, in
 #: particular when the service provides two ports: one for
 #: non-SSL traffic and another for SSL traffic.
 self.use_ssl = False

 #: Enable connecting to the service without using SSL
 #: immediately, but allow upgrading the connection later
 #: to use SSL.
 self.use_tls = False

 #: If set to ``True``, attempt to connect through an HTTP
 #: proxy based on the settings in :attr:`proxy_config`.
 self.use_proxy = False

 #: If set to ``True``, attempt to use IPv6.
 self.use_ipv6 = True

 #: Use CDATA for escaping instead of XML entities. Defaults
 #: to ``False``.
 self.use_cdata = False

 #: An optional dictionary of proxy settings. It may provide:
 #: :host: The host offering proxy services.
 #: :port: The port for the proxy service.
 #: :username: Optional username for accessing the proxy.
 #: :password: Optional password for accessing the proxy.
 self.proxy_config = {}

 #: The default namespace of the stream content, not of the
 #: stream wrapper itself.
 self.default_ns = ''

 self.default_lang = None
 self.peer_default_lang = None

 #: The namespace of the enveloping stream element.
 self.stream_ns = ''

 #: The default opening tag for the stream element.
 self.stream_header = "<stream>"

 #: The default closing tag for the stream element.
 self.stream_footer = "</stream>"

 #: If ``True``, periodically send a whitespace character over the
 #: wire to keep the connection alive. Mainly useful for connections
 #: traversing NAT.
 self.whitespace_keepalive = True

 #: The default interval between keepalive signals when
 #: :attr:`whitespace_keepalive` is enabled.
 self.whitespace_keepalive_interval = 300

 #: An :class:`~threading.Event` to signal that the application
 #: is stopping, and that all threads should shutdown.
 self.stop = threading.Event()

 #: An :class:`~threading.Event` to signal receiving a closing
 #: stream tag from the server.
 self.stream_end_event = threading.Event()
 self.stream_end_event.set()

 #: An :class:`~threading.Event` to signal the start of a stream
 #: session. Until this event fires, the send queue is not used
 #: and data is sent immediately over the wire.
 self.session_started_event = threading.Event()

 #: The default time in seconds to wait for a session to start
 #: after connecting before reconnecting and trying again.
 self.session_timeout = 45

 #: Flag for controlling if the session can be considered ended
 #: if the connection is terminated.
 self.end_session_on_disconnect = True

 #: A queue of stream, custom, and scheduled events to be processed.
 self.event_queue = Queue()

 #: A queue of string data to be sent over the stream.
 self.send_queue = Queue()
 self.send_queue_lock = threading.Lock()
 self.send_lock = threading.RLock()

 #: A :class:`~sleekxmpp.xmlstream.scheduler.Scheduler` instance for
 #: executing callbacks in the future based on time delays.
 self.scheduler = Scheduler(self.stop)
 self.__failed_send_stanza = None

 #: A mapping of XML namespaces to well-known prefixes.
 self.namespace_map = {StanzaBase.xml_ns: 'xml'}

 self.__thread = {}
 self.__root_stanza = []
 self.__handlers = []
 self.__event_handlers = {}
 self.__event_handlers_lock = threading.Lock()
 self.__filters = {'in': [], 'out': [], 'out_sync': []}
 self.__thread_count = 0
 self.__thread_cond = threading.Condition()
 self.__active_threads = set()
 self._use_daemons = False
 self._disconnect_wait_for_threads = True

 self._id = 0
 self._id_lock = threading.Lock()

 #: We use an ID prefix to ensure that all ID values are unique.
 self._id_prefix = '%s-' % uuid.uuid4()

 #: The :attr:`auto_reconnnect` setting controls whether or not
 #: the stream will be restarted in the event of an error.
 self.auto_reconnect = True

 #: The :attr:`disconnect_wait` setting is the default value
 #: for controlling if the system waits for the send queue to
 #: empty before ending the stream. This may be overridden by
 #: passing ``wait=True`` or ``wait=False`` to :meth:`disconnect`.
 #: The default :attr:`disconnect_wait` value is ``False``.
 self.disconnect_wait = False

 #: A list of DNS results that have not yet been tried.
 self.dns_answers = []

 #: The service name to check with DNS SRV records. For
 #: example, setting this to ``'xmpp-client'`` would query the
 #: ``_xmpp-client._tcp`` service.
 self.dns_service = None

 self.add_event_handler('connected', self._session_timeout_check)
 self.add_event_handler('disconnected', self._remove_schedules)
 self.add_event_handler('session_start', self._start_keepalive)
 self.add_event_handler('session_start', self._cert_expiration)

[docs] def use_signals(self, signals=None):
 """Register signal handlers for ``SIGHUP`` and ``SIGTERM``.

 By using signals, a ``'killed'`` event will be raised when the
 application is terminated.

 If a signal handler already existed, it will be executed first,
 before the ``'killed'`` event is raised.

 :param list signals: A list of signal names to be monitored.
 Defaults to ``['SIGHUP', 'SIGTERM']``.
 """
 if signals is None:
 signals = ['SIGHUP', 'SIGTERM']

 existing_handlers = {}
 for sig_name in signals:
 if hasattr(signal, sig_name):
 sig = getattr(signal, sig_name)
 handler = signal.getsignal(sig)
 if handler:
 existing_handlers[sig] = handler

 def handle_kill(signum, frame):
 """
 Capture kill event and disconnect cleanly after first
 spawning the ``'killed'`` event.
 """

 if signum in existing_handlers and \
 existing_handlers[signum] != handle_kill:
 existing_handlers[signum](signum, frame)

 self.event("killed", direct=True)
 self.disconnect()

 try:
 for sig_name in signals:
 if hasattr(signal, sig_name):
 sig = getattr(signal, sig_name)
 signal.signal(sig, handle_kill)
 self.__signals_installed = True
 except:
 log.debug("Can not set interrupt signal handlers. " + \
 "SleekXMPP is not running from a main thread.")

[docs] def new_id(self):
 """Generate and return a new stream ID in hexadecimal form.

 Many stanzas, handlers, or matchers may require unique
 ID values. Using this method ensures that all new ID values
 are unique in this stream.
 """
 with self._id_lock:
 self._id += 1
 return self.get_id()

[docs] def get_id(self):
 """Return the current unique stream ID in hexadecimal form."""
 return "%s%X" % (self._id_prefix, self._id)

[docs] def connect(self, host='', port=0, use_ssl=False,
 use_tls=True, reattempt=True):
 """Create a new socket and connect to the server.

 Setting ``reattempt`` to ``True`` will cause connection
 attempts to be made with an exponential backoff delay (max of
 :attr:`reconnect_max_delay` which defaults to 10 minute) until a
 successful connection is established.

 :param host: The name of the desired server for the connection.
 :param port: Port to connect to on the server.
 :param use_ssl: Flag indicating if SSL should be used by connecting
 directly to a port using SSL.
 :param use_tls: Flag indicating if TLS should be used, allowing for
 connecting to a port without using SSL immediately and
 later upgrading the connection.
 :param reattempt: Flag indicating if the socket should reconnect
 after disconnections.
 """
 self.stop.clear()

 if host and port:
 self.address = (host, int(port))
 try:
 Socket.inet_aton(self.address[0])
 except (Socket.error, ssl.SSLError):
 self.default_domain = self.address[0]

 # Respect previous SSL and TLS usage directives.
 if use_ssl is not None:
 self.use_ssl = use_ssl
 if use_tls is not None:
 self.use_tls = use_tls

 # Repeatedly attempt to connect until a successful connection
 # is established.
 attempts = self.reconnect_max_attempts
 connected = self.state.transition('disconnected', 'connected',
 func=self._connect,
 args=(reattempt,))
 while reattempt and not connected and not self.stop.is_set():
 connected = self.state.transition('disconnected', 'connected',
 func=self._connect)
 if not connected:
 if attempts is not None:
 attempts -= 1
 if attempts <= 0:
 self.event('connection_failed', direct=True)
 return False
 return connected

 def _connect(self, reattempt=True):
 self.scheduler.remove('Session timeout check')

 if self.reconnect_delay is None or not reattempt:
 delay = 1.0
 else:
 delay = min(self.reconnect_delay * 2, self.reconnect_max_delay)
 delay = random.normalvariate(delay, delay * 0.1)
 log.debug('Waiting %s seconds before connecting.', delay)
 elapsed = 0
 try:
 while elapsed < delay and not self.stop.is_set():
 time.sleep(0.1)
 elapsed += 0.1
 except KeyboardInterrupt:
 self.stop.set()
 return False
 except SystemExit:
 self.stop.set()
 return False

 if self.default_domain:
 try:
 host, address, port = self.pick_dns_answer(self.default_domain,
 self.address[1])
 self.address = (address, port)
 self._service_name = host
 except StopIteration:
 log.debug("No remaining DNS records to try.")
 self.dns_answers = None
 if reattempt:
 self.reconnect_delay = delay
 return False

 af = Socket.AF_INET
 proto = 'IPv4'
 if ':' in self.address[0]:
 af = Socket.AF_INET6
 proto = 'IPv6'
 try:
 self.socket = self.socket_class(af, Socket.SOCK_STREAM)
 except Socket.error:
 log.debug("Could not connect using %s", proto)
 return False

 self.configure_socket()

 if self.use_proxy:
 connected = self._connect_proxy()
 if not connected:
 if reattempt:
 self.reconnect_delay = delay
 return False

 if self.use_ssl:
 log.debug("Socket Wrapped for SSL")
 if self.ca_certs is None:
 cert_policy = ssl.CERT_NONE
 else:
 cert_policy = ssl.CERT_REQUIRED

 ssl_socket = ssl.wrap_socket(self.socket,
 certfile=self.certfile,
 keyfile=self.keyfile,
 ca_certs=self.ca_certs,
 cert_reqs=cert_policy,
 do_handshake_on_connect=False)

 if hasattr(self.socket, 'socket'):
 # We are using a testing socket, so preserve the top
 # layer of wrapping.
 self.socket.socket = ssl_socket
 else:
 self.socket = ssl_socket

 try:
 if not self.use_proxy:
 domain = self.address[0]
 if ':' in domain:
 domain = '[%s]' % domain
 log.debug("Connecting to %s:%s", domain, self.address[1])
 self.socket.connect(self.address)

 if self.use_ssl:
 try:
 self.socket.do_handshake()
 except (Socket.error, ssl.SSLError):
 log.error('CERT: Invalid certificate trust chain.')
 if not self.event_handled('ssl_invalid_chain'):
 self.disconnect(self.auto_reconnect,
 send_close=False)
 else:
 self.event('ssl_invalid_chain', direct=True)
 return False

 self._der_cert = self.socket.getpeercert(binary_form=True)
 pem_cert = ssl.DER_cert_to_PEM_cert(self._der_cert)
 log.debug('CERT: %s', pem_cert)

 self.event('ssl_cert', pem_cert, direct=True)
 try:
 cert.verify(self._expected_server_name, self._der_cert)
 except cert.CertificateError as err:
 if not self.event_handled('ssl_invalid_cert'):
 log.error(err)
 self.disconnect(send_close=False)
 else:
 self.event('ssl_invalid_cert',
 pem_cert,
 direct=True)

 self.set_socket(self.socket, ignore=True)
 #this event is where you should set your application state
 self.event("connected", direct=True)
 return True
 except (Socket.error, ssl.SSLError) as serr:
 error_msg = "Could not connect to %s:%s. Socket Error #%s: %s"
 self.event('socket_error', serr, direct=True)
 domain = self.address[0]
 if ':' in domain:
 domain = '[%s]' % domain
 log.error(error_msg, domain, self.address[1],
 serr.errno, serr.strerror)
 return False

 def _connect_proxy(self):
 """Attempt to connect using an HTTP Proxy."""

 # Extract the proxy address, and optional credentials
 address = (self.proxy_config['host'], int(self.proxy_config['port']))
 cred = None
 if self.proxy_config['username']:
 username = self.proxy_config['username']
 password = self.proxy_config['password']

 cred = '%s:%s' % (username, password)
 if sys.version_info < (3, 0):
 cred = bytes(cred)
 else:
 cred = bytes(cred, 'utf-8')
 cred = base64.b64encode(cred).decode('utf-8')

 # Build the HTTP headers for connecting to the XMPP server
 headers = ['CONNECT %s:%s HTTP/1.0' % self.address,
 'Host: %s:%s' % self.address,
 'Proxy-Connection: Keep-Alive',
 'Pragma: no-cache',
 'User-Agent: SleekXMPP/%s' % sleekxmpp.__version__]
 if cred:
 headers.append('Proxy-Authorization: Basic %s' % cred)
 headers = '\r\n'.join(headers) + '\r\n\r\n'

 try:
 log.debug("Connecting to proxy: %s:%s", address)
 self.socket.connect(address)
 self.send_raw(headers, now=True)
 resp = ''
 while '\r\n\r\n' not in resp and not self.stop.is_set():
 resp += self.socket.recv(1024).decode('utf-8')
 log.debug('RECV: %s', resp)

 lines = resp.split('\r\n')
 if '200' not in lines[0]:
 self.event('proxy_error', resp)
 log.error('Proxy Error: %s', lines[0])
 return False

 # Proxy connection established, continue connecting
 # with the XMPP server.
 return True
 except (Socket.error, ssl.SSLError) as serr:
 error_msg = "Could not connect to %s:%s. Socket Error #%s: %s"
 self.event('socket_error', serr, direct=True)
 log.error(error_msg, self.address[0], self.address[1],
 serr.errno, serr.strerror)
 return False

 def _session_timeout_check(self, event=None):
 """
 Add check to ensure that a session is established within
 a reasonable amount of time.
 """

 def _handle_session_timeout():
 if not self.session_started_event.is_set():
 log.debug("Session start has taken more " + \
 "than %d seconds", self.session_timeout)
 self.disconnect(reconnect=self.auto_reconnect)

 self.schedule("Session timeout check",
 self.session_timeout,
 _handle_session_timeout)

[docs] def disconnect(self, reconnect=False, wait=None, send_close=True):
 """Terminate processing and close the XML streams.

 Optionally, the connection may be reconnected and
 resume processing afterwards.

 If the disconnect should take place after all items
 in the send queue have been sent, use ``wait=True``.

 .. warning::

 If you are constantly adding items to the queue
 such that it is never empty, then the disconnect will
 not occur and the call will continue to block.

 :param reconnect: Flag indicating if the connection
 and processing should be restarted.
 Defaults to ``False``.
 :param wait: Flag indicating if the send queue should
 be emptied before disconnecting, overriding
 :attr:`disconnect_wait`.
 :param send_close: Flag indicating if the stream footer
 should be sent before terminating the
 connection. Setting this to ``False``
 prevents error loops when trying to
 disconnect after a socket error.
 """
 self.state.transition('connected', 'disconnected',
 wait=2.0,
 func=self._disconnect,
 args=(reconnect, wait, send_close))

 def _disconnect(self, reconnect=False, wait=None, send_close=True):
 if not reconnect:
 self.auto_reconnect = False

 if self.end_session_on_disconnect or send_close:
 self.event('session_end', direct=True)

 # Wait for the send queue to empty.
 if wait is not None:
 if wait:
 self.send_queue.join()
 elif self.disconnect_wait:
 self.send_queue.join()

 # Clearing this event will pause the send loop.
 self.session_started_event.clear()

 self.__failed_send_stanza = None

 # Send the end of stream marker.
 if send_close:
 self.send_raw(self.stream_footer, now=True)

 # Wait for confirmation that the stream was
 # closed in the other direction. If we didn't
 # send a stream footer we don't need to wait
 # since the server won't know to respond.
 if send_close:
 log.info('Waiting for %s from server', self.stream_footer)
 self.stream_end_event.wait(4)
 else:
 self.stream_end_event.set()

 if not self.auto_reconnect:
 self.stop.set()
 if self._disconnect_wait_for_threads:
 self._wait_for_threads()

 try:
 self.socket.shutdown(Socket.SHUT_RDWR)
 self.socket.close()
 self.filesocket.close()
 except (Socket.error, ssl.SSLError) as serr:
 self.event('socket_error', serr, direct=True)
 finally:
 #clear your application state
 self.event("disconnected", direct=True)
 return True

 def abort(self):
 self.session_started_event.clear()
 self.stop.set()
 if self._disconnect_wait_for_threads:
 self._wait_for_threads()
 try:
 self.socket.shutdown(Socket.SHUT_RDWR)
 self.socket.close()
 self.filesocket.close()
 except Socket.error:
 pass
 self.state.transition_any(['connected', 'disconnected'], 'disconnected', func=lambda: True)
 self.event("killed", direct=True)

[docs] def reconnect(self, reattempt=True, wait=False, send_close=True):
 """Reset the stream's state and reconnect to the server."""
 log.debug("reconnecting...")
 if self.state.ensure('connected'):
 self.state.transition('connected', 'disconnected',
 wait=2.0,
 func=self._disconnect,
 args=(True, wait, send_close))

 attempts = self.reconnect_max_attempts

 log.debug("connecting...")
 connected = self.state.transition('disconnected', 'connected',
 wait=2.0,
 func=self._connect,
 args=(reattempt,))
 while reattempt and not connected and not self.stop.is_set():
 connected = self.state.transition('disconnected', 'connected',
 wait=2.0, func=self._connect)
 connected = connected or self.state.ensure('connected')
 if not connected:
 if attempts is not None:
 attempts -= 1
 if attempts <= 0:
 self.event('connection_failed', direct=True)
 return False
 return connected

[docs] def set_socket(self, socket, ignore=False):
 """Set the socket to use for the stream.

 The filesocket will be recreated as well.

 :param socket: The new socket object to use.
 :param bool ignore: If ``True``, don't set the connection
 state to ``'connected'``.
 """
 self.socket = socket
 if socket is not None:
 # ElementTree.iterparse requires a file.
 # 0 buffer files have to be binary.

 # Use the correct fileobject type based on the Python
 # version to work around a broken implementation in
 # Python 2.x.
 if sys.version_info < (3, 0):
 self.filesocket = FileSocket(self.socket)
 else:
 self.filesocket = self.socket.makefile('rb', 0)
 if not ignore:
 self.state._set_state('connected')

[docs] def configure_socket(self):
 """Set timeout and other options for self.socket.

 Meant to be overridden.
 """
 self.socket.settimeout(None)

[docs] def configure_dns(self, resolver, domain=None, port=None):
 """
 Configure and set options for a :class:`~dns.resolver.Resolver`
 instance, and other DNS related tasks. For example, you
 can also check :meth:`~socket.socket.getaddrinfo` to see
 if you need to call out to ``libresolv.so.2`` to
 run ``res_init()``.

 Meant to be overridden.

 :param resolver: A :class:`~dns.resolver.Resolver` instance
 or ``None`` if ``dnspython`` is not installed.
 :param domain: The initial domain under consideration.
 :param port: The initial port under consideration.
 """
 pass

[docs] def start_tls(self):
 """Perform handshakes for TLS.

 If the handshake is successful, the XML stream will need
 to be restarted.
 """
 log.info("Negotiating TLS")
 log.info("Using SSL version: %s", str(self.ssl_version))
 if self.ca_certs is None:
 cert_policy = ssl.CERT_NONE
 else:
 cert_policy = ssl.CERT_REQUIRED

 ssl_socket = ssl.wrap_socket(self.socket,
 certfile=self.certfile,
 keyfile=self.keyfile,
 ssl_version=self.ssl_version,
 do_handshake_on_connect=False,
 ca_certs=self.ca_certs,
 cert_reqs=cert_policy)

 if hasattr(self.socket, 'socket'):
 # We are using a testing socket, so preserve the top
 # layer of wrapping.
 self.socket.socket = ssl_socket
 else:
 self.socket = ssl_socket

 try:
 self.socket.do_handshake()
 except (Socket.error, ssl.SSLError):
 log.error('CERT: Invalid certificate trust chain.')
 if not self.event_handled('ssl_invalid_chain'):
 self.disconnect(self.auto_reconnect, send_close=False)
 else:
 self._der_cert = self.socket.getpeercert(binary_form=True)
 self.event('ssl_invalid_chain', direct=True)
 return False

 self._der_cert = self.socket.getpeercert(binary_form=True)
 pem_cert = ssl.DER_cert_to_PEM_cert(self._der_cert)
 log.debug('CERT: %s', pem_cert)
 self.event('ssl_cert', pem_cert, direct=True)

 try:
 cert.verify(self._expected_server_name, self._der_cert)
 except cert.CertificateError as err:
 if not self.event_handled('ssl_invalid_cert'):
 log.error(err)
 self.disconnect(self.auto_reconnect, send_close=False)
 else:
 self.event('ssl_invalid_cert', pem_cert, direct=True)

 self.set_socket(self.socket)
 return True

 def _cert_expiration(self, event):
 """Schedule an event for when the TLS certificate expires."""

 if not self.use_tls and not self.use_ssl:
 return

 if not self._der_cert:
 log.warn("TLS or SSL was enabled, but no certificate was found.")
 return

 def restart():
 if not self.event_handled('ssl_expired_cert'):
 log.warn("The server certificate has expired. Restarting.")
 self.reconnect()
 else:
 pem_cert = ssl.DER_cert_to_PEM_cert(self._der_cert)
 self.event('ssl_expired_cert', pem_cert)

 cert_ttl = cert.get_ttl(self._der_cert)
 if cert_ttl is None:
 return

 if cert_ttl.days < 0:
 log.warn('CERT: Certificate has expired.')
 restart()

 try:
 total_seconds = cert_ttl.total_seconds()
 except AttributeError:
 # for Python < 2.7
 total_seconds = (cert_ttl.microseconds + (cert_ttl.seconds + cert_ttl.days * 24 * 3600) * 10**6) / 10**6

 log.info('CERT: Time until certificate expiration: %s' % cert_ttl)
 self.schedule('Certificate Expiration',
 total_seconds,
 restart)

 def _start_keepalive(self, event):
 """Begin sending whitespace periodically to keep the connection alive.

 May be disabled by setting::

 self.whitespace_keepalive = False

 The keepalive interval can be set using::

 self.whitespace_keepalive_interval = 300
 """
 self.schedule('Whitespace Keepalive',
 self.whitespace_keepalive_interval,
 self.send_raw,
 args=(' ',),
 kwargs={'now': True},
 repeat=True)

 def _remove_schedules(self, event):
 """Remove whitespace keepalive and certificate expiration schedules."""
 self.scheduler.remove('Whitespace Keepalive')
 self.scheduler.remove('Certificate Expiration')

[docs] def start_stream_handler(self, xml):
 """Perform any initialization actions, such as handshakes,
 once the stream header has been sent.

 Meant to be overridden.
 """
 pass

[docs] def register_stanza(self, stanza_class):
 """Add a stanza object class as a known root stanza.

 A root stanza is one that appears as a direct child of the stream's
 root element.

 Stanzas that appear as substanzas of a root stanza do not need to
 be registered here. That is done using register_stanza_plugin() from
 sleekxmpp.xmlstream.stanzabase.

 Stanzas that are not registered will not be converted into
 stanza objects, but may still be processed using handlers and
 matchers.

 :param stanza_class: The top-level stanza object's class.
 """
 self.__root_stanza.append(stanza_class)

[docs] def remove_stanza(self, stanza_class):
 """Remove a stanza from being a known root stanza.

 A root stanza is one that appears as a direct child of the stream's
 root element.

 Stanzas that are not registered will not be converted into
 stanza objects, but may still be processed using handlers and
 matchers.
 """
 self.__root_stanza.remove(stanza_class)

[docs] def add_filter(self, mode, handler, order=None):
 """Add a filter for incoming or outgoing stanzas.

 These filters are applied before incoming stanzas are
 passed to any handlers, and before outgoing stanzas
 are put in the send queue.

 Each filter must accept a single stanza, and return
 either a stanza or ``None``. If the filter returns
 ``None``, then the stanza will be dropped from being
 processed for events or from being sent.

 :param mode: One of ``'in'`` or ``'out'``.
 :param handler: The filter function.
 :param int order: The position to insert the filter in
 the list of active filters.
 """
 if order:
 self.__filters[mode].insert(order, handler)
 else:
 self.__filters[mode].append(handler)

[docs] def del_filter(self, mode, handler):
 """Remove an incoming or outgoing filter."""
 self.__filters[mode].remove(handler)

[docs] def add_handler(self, mask, pointer, name=None, disposable=False,
 threaded=False, filter=False, instream=False):
 """A shortcut method for registering a handler using XML masks.

 The use of :meth:`register_handler()` is preferred.

 :param mask: An XML snippet matching the structure of the
 stanzas that will be passed to this handler.
 :param pointer: The handler function itself.
 :parm name: A unique name for the handler. A name will
 be generated if one is not provided.
 :param disposable: Indicates if the handler should be discarded
 after one use.
 :param threaded: **DEPRECATED**.
 Remains for backwards compatibility.
 :param filter: **DEPRECATED**.
 Remains for backwards compatibility.
 :param instream: Indicates if the handler should execute during
 stream processing and not during normal event
 processing.
 """
 # To prevent circular dependencies, we must load the matcher
 # and handler classes here.

 if name is None:
 name = 'add_handler_%s' % self.getNewId()
 self.registerHandler(XMLCallback(name, MatchXMLMask(mask), pointer,
 once=disposable, instream=instream))

[docs] def register_handler(self, handler, before=None, after=None):
 """Add a stream event handler that will be executed when a matching
 stanza is received.

 :param handler:
 The :class:`~sleekxmpp.xmlstream.handler.base.BaseHandler`
 derived object to execute.
 """
 if handler.stream is None:
 self.__handlers.append(handler)
 handler.stream = weakref.ref(self)

[docs] def remove_handler(self, name):
 """Remove any stream event handlers with the given name.

 :param name: The name of the handler.
 """
 idx = 0
 for handler in self.__handlers:
 if handler.name == name:
 self.__handlers.pop(idx)
 return True
 idx += 1
 return False

[docs] def get_dns_records(self, domain, port=None):
 """Get the DNS records for a domain.

 :param domain: The domain in question.
 :param port: If the results don't include a port, use this one.
 """
 if port is None:
 port = self.default_port

 resolver = default_resolver()
 self.configure_dns(resolver, domain=domain, port=port)

 return resolve(domain, port, service=self.dns_service,
 resolver=resolver,
 use_ipv6=self.use_ipv6)

[docs] def pick_dns_answer(self, domain, port=None):
 """Pick a server and port from DNS answers.

 Gets DNS answers if none available.
 Removes used answer from available answers.

 :param domain: The domain in question.
 :param port: If the results don't include a port, use this one.
 """
 if not self.dns_answers:
 self.dns_answers = self.get_dns_records(domain, port)

 if sys.version_info < (3, 0):
 return self.dns_answers.next()
 else:
 return next(self.dns_answers)

[docs] def add_event_handler(self, name, pointer,
 threaded=False, disposable=False):
 """Add a custom event handler that will be executed whenever
 its event is manually triggered.

 :param name: The name of the event that will trigger
 this handler.
 :param pointer: The function to execute.
 :param threaded: If set to ``True``, the handler will execute
 in its own thread. Defaults to ``False``.
 :param disposable: If set to ``True``, the handler will be
 discarded after one use. Defaults to ``False``.
 """
 if not name in self.__event_handlers:
 self.__event_handlers[name] = []
 self.__event_handlers[name].append((pointer, threaded, disposable))

[docs] def del_event_handler(self, name, pointer):
 """Remove a function as a handler for an event.

 :param name: The name of the event.
 :param pointer: The function to remove as a handler.
 """
 if not name in self.__event_handlers:
 return

 # Need to keep handlers that do not use
 # the given function pointer
 def filter_pointers(handler):
 return handler[0] != pointer

 self.__event_handlers[name] = list(filter(
 filter_pointers,
 self.__event_handlers[name]))

[docs] def event_handled(self, name):
 """Returns the number of registered handlers for an event.

 :param name: The name of the event to check.
 """
 return len(self.__event_handlers.get(name, []))

[docs] def event(self, name, data={}, direct=False):
 """Manually trigger a custom event.

 :param name: The name of the event to trigger.
 :param data: Data that will be passed to each event handler.
 Defaults to an empty dictionary, but is usually
 a stanza object.
 :param direct: Runs the event directly if True, skipping the
 event queue. All event handlers will run in the
 same thread.
 """
 handlers = self.__event_handlers.get(name, [])
 for handler in handlers:
 #TODO: Data should not be copied, but should be read only,
 # but this might break current code so it's left for future.

 out_data = copy.copy(data) if len(handlers) > 1 else data
 old_exception = getattr(data, 'exception', None)
 if direct:
 try:
 handler[0](out_data)
 except Exception as e:
 error_msg = 'Error processing event handler: %s'
 log.exception(error_msg, str(handler[0]))
 if old_exception:
 old_exception(e)
 else:
 self.exception(e)
 else:
 self.event_queue.put(('event', handler, out_data))
 if handler[2]:
 # If the handler is disposable, we will go ahead and
 # remove it now instead of waiting for it to be
 # processed in the queue.
 with self.__event_handlers_lock:
 try:
 h_index = self.__event_handlers[name].index(handler)
 self.__event_handlers[name].pop(h_index)
 except:
 pass

[docs] def schedule(self, name, seconds, callback, args=None,
 kwargs=None, repeat=False):
 """Schedule a callback function to execute after a given delay.

 :param name: A unique name for the scheduled callback.
 :param seconds: The time in seconds to wait before executing.
 :param callback: A pointer to the function to execute.
 :param args: A tuple of arguments to pass to the function.
 :param kwargs: A dictionary of keyword arguments to pass to
 the function.
 :param repeat: Flag indicating if the scheduled event should
 be reset and repeat after executing.
 """
 self.scheduler.add(name, seconds, callback, args, kwargs,
 repeat, qpointer=self.event_queue)

[docs] def incoming_filter(self, xml):
 """Filter incoming XML objects before they are processed.

 Possible uses include remapping namespaces, or correcting elements
 from sources with incorrect behavior.

 Meant to be overridden.
 """
 return xml

[docs] def send(self, data, mask=None, timeout=None, now=False, use_filters=True):
 """A wrapper for :meth:`send_raw()` for sending stanza objects.

 May optionally block until an expected response is received.

 :param data: The :class:`~sleekxmpp.xmlstream.stanzabase.ElementBase`
 stanza to send on the stream.
 :param mask: **DEPRECATED**
 An XML string snippet matching the structure
 of the expected response. Execution will block
 in this thread until the response is received
 or a timeout occurs.
 :param int timeout: Time in seconds to wait for a response before
 continuing. Defaults to :attr:`response_timeout`.
 :param bool now: Indicates if the send queue should be skipped,
 sending the stanza immediately. Useful mainly
 for stream initialization stanzas.
 Defaults to ``False``.
 :param bool use_filters: Indicates if outgoing filters should be
 applied to the given stanza data. Disabling
 filters is useful when resending stanzas.
 Defaults to ``True``.
 """
 if timeout is None:
 timeout = self.response_timeout
 if hasattr(mask, 'xml'):
 mask = mask.xml

 if isinstance(data, ElementBase):
 if use_filters:
 for filter in self.__filters['out']:
 data = filter(data)
 if data is None:
 return

 if mask is not None:
 log.warning("Use of send mask waiters is deprecated.")
 wait_for = Waiter("SendWait_%s" % self.new_id(),
 MatchXMLMask(mask))
 self.register_handler(wait_for)

 if isinstance(data, ElementBase):
 with self.send_queue_lock:
 if use_filters:
 for filter in self.__filters['out_sync']:
 data = filter(data)
 if data is None:
 return
 str_data = tostring(data.xml, xmlns=self.default_ns,
 stream=self,
 top_level=True)
 self.send_raw(str_data, now)
 else:
 self.send_raw(data, now)
 if mask is not None:
 return wait_for.wait(timeout)

[docs] def send_xml(self, data, mask=None, timeout=None, now=False):
 """Send an XML object on the stream, and optionally wait
 for a response.

 :param data: The :class:`~xml.etree.ElementTree.Element` XML object
 to send on the stream.
 :param mask: **DEPRECATED**
 An XML string snippet matching the structure
 of the expected response. Execution will block
 in this thread until the response is received
 or a timeout occurs.
 :param int timeout: Time in seconds to wait for a response before
 continuing. Defaults to :attr:`response_timeout`.
 :param bool now: Indicates if the send queue should be skipped,
 sending the stanza immediately. Useful mainly
 for stream initialization stanzas.
 Defaults to ``False``.
 """
 if timeout is None:
 timeout = self.response_timeout
 return self.send(tostring(data), mask, timeout, now)

[docs] def send_raw(self, data, now=False, reconnect=None):
 """Send raw data across the stream.

 :param string data: Any string value.
 :param bool reconnect: Indicates if the stream should be
 restarted if there is an error sending
 the stanza. Used mainly for testing.
 Defaults to :attr:`auto_reconnect`.
 """
 if now:
 log.debug("SEND (IMMED): %s", data)
 try:
 data = data.encode('utf-8')
 total = len(data)
 sent = 0
 count = 0
 tries = 0
 with self.send_lock:
 while sent < total and not self.stop.is_set():
 try:
 sent += self.socket.send(data[sent:])
 count += 1
 except ssl.SSLError as serr:
 if tries >= self.ssl_retry_max:
 log.debug('SSL error: max retries reached')
 self.exception(serr)
 log.warning("Failed to send %s", data)
 if reconnect is None:
 reconnect = self.auto_reconnect
 if not self.stop.is_set():
 self.disconnect(reconnect,
 send_close=False)
 log.warning('SSL write error: retrying')
 if not self.stop.is_set():
 time.sleep(self.ssl_retry_delay)
 tries += 1
 if count > 1:
 log.debug('SENT: %d chunks', count)
 except (Socket.error, ssl.SSLError) as serr:
 self.event('socket_error', serr, direct=True)
 log.warning("Failed to send %s", data)
 if reconnect is None:
 reconnect = self.auto_reconnect
 if not self.stop.is_set():
 self.disconnect(reconnect, send_close=False)
 else:
 self.send_queue.put(data)
 return True

 def _start_thread(self, name, target, track=True):
 self.__active_threads.add(name)
 self.__thread[name] = threading.Thread(name=name, target=target)
 self.__thread[name].daemon = self._use_daemons
 self.__thread[name].start()

 if track:
 with self.__thread_cond:
 self.__thread_count += 1

 def _end_thread(self, name, early=False):
 with self.__thread_cond:
 curr_thread = threading.current_thread().name
 if curr_thread in self.__active_threads:
 self.__thread_count -= 1
 self.__active_threads.remove(curr_thread)

 if early:
 log.debug('Threading deadlock prevention!')
 log.debug(("Marked %s thread as ended due to " + \
 "disconnect() call. %s threads remain.") % (
 name, self.__thread_count))
 else:
 log.debug("Stopped %s thread. %s threads remain." % (
 name, self.__thread_count))

 else:
 log.debug(("Finished exiting %s thread after early " + \
 "termination from disconnect() call. " + \
 "%s threads remain.") % (
 name, self.__thread_count))

 if self.__thread_count == 0:
 self.__thread_cond.notify()

 def _wait_for_threads(self):
 with self.__thread_cond:
 if self.__thread_count != 0:
 log.debug("Waiting for %s threads to exit." %
 self.__thread_count)
 name = threading.current_thread().name
 if name in self.__thread:
 self._end_thread(name, early=True)
 self.__thread_cond.wait(4)
 if self.__thread_count != 0:
 log.error("Hanged threads: %s" % threading.enumerate())
 log.error("This may be due to calling disconnect() " + \
 "from a non-threaded event handler. Be " + \
 "sure that event handlers that call " + \
 "disconnect() are registered using: " + \
 "add_event_handler(..., threaded=True)")

[docs] def process(self, **kwargs):
 """Initialize the XML streams and begin processing events.

 The number of threads used for processing stream events is determined
 by :data:`HANDLER_THREADS`.

 :param bool block: If ``False``, then event dispatcher will run
 in a separate thread, allowing for the stream to be
 used in the background for another application.
 Otherwise, ``process(block=True)`` blocks the current
 thread. Defaults to ``False``.
 :param bool threaded: **DEPRECATED**
 If ``True``, then event dispatcher will run
 in a separate thread, allowing for the stream to be
 used in the background for another application.
 Defaults to ``True``. This does **not** mean that no
 threads are used at all if ``threaded=False``.

 Regardless of these threading options, these threads will
 always exist:

 - The event queue processor
 - The send queue processor
 - The scheduler
 """
 if 'threaded' in kwargs and 'block' in kwargs:
 raise ValueError("process() called with both " + \
 "block and threaded arguments")
 elif 'block' in kwargs:
 threaded = not(kwargs.get('block', False))
 else:
 threaded = kwargs.get('threaded', True)

 for t in range(0, HANDLER_THREADS):
 log.debug("Starting HANDLER THREAD")
 self._start_thread('event_thread_%s' % t, self._event_runner)

 self._start_thread('send_thread', self._send_thread)
 self._start_thread('scheduler_thread', self._scheduler_thread)

 if threaded:
 # Run the XML stream in the background for another application.
 self._start_thread('read_thread', self._process, track=False)
 else:
 self._process()

 def _process(self):
 """Start processing the XML streams.

 Processing will continue after any recoverable errors
 if reconnections are allowed.
 """

 # The body of this loop will only execute once per connection.
 # Additional passes will be made only if an error occurs and
 # reconnecting is permitted.
 while True:
 shutdown = False
 try:
 # The call to self.__read_xml will block and prevent
 # the body of the loop from running until a disconnect
 # occurs. After any reconnection, the stream header will
 # be resent and processing will resume.
 while not self.stop.is_set():
 # Only process the stream while connected to the server
 if not self.state.ensure('connected', wait=0.1):
 break
 # Ensure the stream header is sent for any
 # new connections.
 if not self.session_started_event.is_set():
 self.send_raw(self.stream_header, now=True)
 if not self.__read_xml():
 # If the server terminated the stream, end processing
 break
 except KeyboardInterrupt:
 log.debug("Keyboard Escape Detected in _process")
 self.event('killed', direct=True)
 shutdown = True
 except SystemExit:
 log.debug("SystemExit in _process")
 shutdown = True
 except (SyntaxError, ExpatError) as e:
 log.error("Error reading from XML stream.")
 self.exception(e)
 except (Socket.error, ssl.SSLError) as serr:
 self.event('socket_error', serr, direct=True)
 log.error('Socket Error #%s: %s', serr.errno, serr.strerror)
 except ValueError as e:
 msg = e.message if hasattr(e, 'message') else e.args[0]

 if 'I/O operation on closed file' in msg:
 log.error('Can not read from closed socket.')
 else:
 self.exception(e)
 except Exception as e:
 if not self.stop.is_set():
 log.error('Connection error.')
 self.exception(e)

 if not shutdown and not self.stop.is_set() \
 and self.auto_reconnect:
 self.reconnect()
 else:
 self.disconnect()
 break

 def __read_xml(self):
 """Parse the incoming XML stream

 Stream events are raised for each received stanza.
 """
 depth = 0
 root = None
 for event, xml in ET.iterparse(self.filesocket, (b'end', b'start')):
 if event == b'start':
 if depth == 0:
 # We have received the start of the root element.
 root = xml
 log.debug('RECV: %s', tostring(root, xmlns=self.default_ns,
 stream=self,
 top_level=True,
 open_only=True))
 # Perform any stream initialization actions, such
 # as handshakes.
 self.stream_end_event.clear()
 self.start_stream_handler(root)

 # We have a successful stream connection, so reset
 # exponential backoff for new reconnect attempts.
 self.reconnect_delay = 1.0
 depth += 1
 if event == b'end':
 depth -= 1
 if depth == 0:
 # The stream's root element has closed,
 # terminating the stream.
 log.debug("End of stream recieved")
 self.stream_end_event.set()
 return False
 elif depth == 1:
 # We only raise events for stanzas that are direct
 # children of the root element.
 try:
 self.__spawn_event(xml)
 except RestartStream:
 return True
 if root is not None:
 # Keep the root element empty of children to
 # save on memory use.
 root.clear()
 log.debug("Ending read XML loop")

 def _build_stanza(self, xml, default_ns=None):
 """Create a stanza object from a given XML object.

 If a specialized stanza type is not found for the XML, then
 a generic :class:`~sleekxmpp.xmlstream.stanzabase.StanzaBase`
 stanza will be returned.

 :param xml: The :class:`~xml.etree.ElementTree.Element` XML object
 to convert into a stanza object.
 :param default_ns: Optional default namespace to use instead of the
 stream's current default namespace.
 """
 if default_ns is None:
 default_ns = self.default_ns
 stanza_type = StanzaBase
 for stanza_class in self.__root_stanza:
 if xml.tag == "{%s}%s" % (default_ns, stanza_class.name) or \
 xml.tag == stanza_class.tag_name():
 stanza_type = stanza_class
 break
 stanza = stanza_type(self, xml)
 if stanza['lang'] is None and self.peer_default_lang:
 stanza['lang'] = self.peer_default_lang
 return stanza

 def __spawn_event(self, xml):
 """
 Analyze incoming XML stanzas and convert them into stanza
 objects if applicable and queue stream events to be processed
 by matching handlers.

 :param xml: The :class:`~sleekxmpp.xmlstream.stanzabase.ElementBase`
 stanza to analyze.
 """
 # Apply any preprocessing filters.
 xml = self.incoming_filter(xml)

 # Convert the raw XML object into a stanza object. If no registered
 # stanza type applies, a generic StanzaBase stanza will be used.
 stanza = self._build_stanza(xml)

 for filter in self.__filters['in']:
 if stanza is not None:
 stanza = filter(stanza)
 if stanza is None:
 return

 log.debug("RECV: %s", stanza)

 # Match the stanza against registered handlers. Handlers marked
 # to run "in stream" will be executed immediately; the rest will
 # be queued.
 unhandled = True
 matched_handlers = [h for h in self.__handlers if h.match(stanza)]
 for handler in matched_handlers:
 if len(matched_handlers) > 1:
 stanza_copy = copy.copy(stanza)
 else:
 stanza_copy = stanza
 handler.prerun(stanza_copy)
 self.event_queue.put(('stanza', handler, stanza_copy))
 try:
 if handler.check_delete():
 self.__handlers.remove(handler)
 except:
 pass # not thread safe
 unhandled = False

 # Some stanzas require responses, such as Iq queries. A default
 # handler will be executed immediately for this case.
 if unhandled:
 stanza.unhandled()

 def _threaded_event_wrapper(self, func, args):
 """Capture exceptions for event handlers that run
 in individual threads.

 :param func: The event handler to execute.
 :param args: Arguments to the event handler.
 """
 # this is always already copied before this is invoked
 orig = args[0]
 try:
 func(*args)
 except Exception as e:
 error_msg = 'Error processing event handler: %s'
 log.exception(error_msg, str(func))
 if hasattr(orig, 'exception'):
 orig.exception(e)
 else:
 self.exception(e)

 def _event_runner(self):
 """Process the event queue and execute handlers.

 The number of event runner threads is controlled by HANDLER_THREADS.

 Stream event handlers will all execute in this thread. Custom event
 handlers may be spawned in individual threads.
 """
 log.debug("Loading event runner")
 try:
 while not self.stop.is_set():
 try:
 wait = self.wait_timeout
 event = self.event_queue.get(True, timeout=wait)
 except QueueEmpty:
 event = None
 if event is None:
 continue

 etype, handler = event[0:2]
 args = event[2:]
 orig = copy.copy(args[0])

 if etype == 'stanza':
 try:
 handler.run(args[0])
 except Exception as e:
 error_msg = 'Error processing stream handler: %s'
 log.exception(error_msg, handler.name)
 orig.exception(e)
 elif etype == 'schedule':
 name = args[1]
 try:
 log.debug('Scheduled event: %s: %s', name, args[0])
 handler(*args[0])
 except Exception as e:
 log.exception('Error processing scheduled task')
 self.exception(e)
 elif etype == 'event':
 func, threaded, disposable = handler
 try:
 if threaded:
 x = threading.Thread(
 name="Event_%s" % str(func),
 target=self._threaded_event_wrapper,
 args=(func, args))
 x.daemon = self._use_daemons
 x.start()
 else:
 func(*args)
 except Exception as e:
 error_msg = 'Error processing event handler: %s'
 log.exception(error_msg, str(func))
 if hasattr(orig, 'exception'):
 orig.exception(e)
 else:
 self.exception(e)
 elif etype == 'quit':
 log.debug("Quitting event runner thread")
 break
 except KeyboardInterrupt:
 log.debug("Keyboard Escape Detected in _event_runner")
 self.event('killed', direct=True)
 self.disconnect()
 except SystemExit:
 self.disconnect()
 self.event_queue.put(('quit', None, None))

 self._end_thread('event runner')

 def _send_thread(self):
 """Extract stanzas from the send queue and send them on the stream."""
 try:
 while not self.stop.is_set():
 while not self.stop.is_set() and \
 not self.session_started_event.is_set():
 self.session_started_event.wait(timeout=0.1)
 if self.__failed_send_stanza is not None:
 data = self.__failed_send_stanza
 self.__failed_send_stanza = None
 else:
 try:
 data = self.send_queue.get(True, 1)
 except QueueEmpty:
 continue
 log.debug("SEND: %s", data)
 enc_data = data.encode('utf-8')
 total = len(enc_data)
 sent = 0
 count = 0
 tries = 0
 try:
 with self.send_lock:
 while sent < total and not self.stop.is_set() and \
 self.session_started_event.is_set():
 try:
 sent += self.socket.send(enc_data[sent:])
 count += 1
 except ssl.SSLError as serr:
 if tries >= self.ssl_retry_max:
 log.debug('SSL error: max retries reached')
 self.exception(serr)
 log.warning("Failed to send %s", data)
 if not self.stop.is_set():
 self.disconnect(self.auto_reconnect,
 send_close=False)
 log.warning('SSL write error: retrying')
 if not self.stop.is_set():
 time.sleep(self.ssl_retry_delay)
 tries += 1
 if count > 1:
 log.debug('SENT: %d chunks', count)
 self.send_queue.task_done()
 except (Socket.error, ssl.SSLError) as serr:
 self.event('socket_error', serr, direct=True)
 log.warning("Failed to send %s", data)
 if not self.stop.is_set():
 self.__failed_send_stanza = data
 self._end_thread('send')
 self.disconnect(self.auto_reconnect, send_close=False)
 return
 except Exception as ex:
 log.exception('Unexpected error in send thread: %s', ex)
 self.exception(ex)
 if not self.stop.is_set():
 self._end_thread('send')
 self.disconnect(self.auto_reconnect)
 return

 self._end_thread('send')

 def _scheduler_thread(self):
 self.scheduler.process(threaded=False)
 self._end_thread('scheduler')

[docs] def exception(self, exception):
 """Process an unknown exception.

 Meant to be overridden.

 :param exception: An unhandled exception object.
 """
 pass

To comply with PEP8, method names now use underscores.
Deprecated method names are re-mapped for backwards compatibility.

XMLStream.startTLS = XMLStream.start_tls
XMLStream.registerStanza = XMLStream.register_stanza
XMLStream.removeStanza = XMLStream.remove_stanza
XMLStream.registerHandler = XMLStream.register_handler
XMLStream.removeHandler = XMLStream.remove_handler
XMLStream.setSocket = XMLStream.set_socket
XMLStream.sendRaw = XMLStream.send_raw
XMLStream.getId = XMLStream.get_id
XMLStream.getNewId = XMLStream.new_id
XMLStream.sendXML = XMLStream.send_xml

 © Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

glossary.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		1.0 Documentation »

Glossary

		event handler

		A callback function that responds to events raised by
XMLStream.event. An event handler may be marked as
threaded, allowing it to execute outside of the main processing
loop.

		stanza object

		Informally may refer both to classes which extend ElementBase
or StanzaBase, and to objects of such classes.

A stanza object is a wrapper for an XML object which exposes dict
like interfaces which may be assigned to, read from, or deleted.

		stanza plugin

		A stanza object which has been registered as a potential child
of another stanza object. The plugin stanza may accessed through the
parent stanza using the plugin’s plugin_attrib as an interface.

		stream handler

		A callback function that accepts stanza objects pulled directly
from the XML stream. A stream handler is encapsulated in a
object that includes a Matcher object, and which provides
additional semantics. For example, the Waiter handler wrapper
blocks thread execution until a matching stanza is received.

		substanza

		See stanza plugin

 © Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/plus.png

_modules/sleekxmpp/xmlstream/matcher/base.html

 Navigation

 		
 index

 		
 modules |

 		1.0 Documentation »

 		Module code »

 Source code for sleekxmpp.xmlstream.matcher.base

-*- coding: utf-8 -*-
"""
 sleekxmpp.xmlstream.matcher.base
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    Part of SleekXMPP: The Sleek XMPP Library

    :copyright: (c) 2011 Nathanael C. Fritz
    :license: MIT, see LICENSE for more details
"""


[docs]class MatcherBase(object):

    """
    Base class for stanza matchers. Stanza matchers are used to pick
    stanzas out of the XML stream and pass them to the appropriate
    stream handlers.

    :param criteria: Object to compare some aspect of a stanza against.
    """

    def __init__(self, criteria):
        self._criteria = criteria

[docs]    def match(self, xml):
        """Check if a stanza matches the stored criteria.

        Meant to be overridden.
        """
        return False







          

      

      

    


    
        © Copyright 2011, Nathan Fritz, Lance Stout.
      Created using Sphinx 1.1.3.
    

 












  
     Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_modules/sleekxmpp/xmlstream/matcher/stanzapath.html

    
      Navigation


      
        		
          index


        		
          modules |


        		1.0 Documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for sleekxmpp.xmlstream.matcher.stanzapath

# -*- coding: utf-8 -*-
"""
    sleekxmpp.xmlstream.matcher.stanzapath
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 Part of SleekXMPP: The Sleek XMPP Library

 :copyright: (c) 2011 Nathanael C. Fritz
 :license: MIT, see LICENSE for more details
"""

from sleekxmpp.xmlstream.matcher.base import MatcherBase
from sleekxmpp.xmlstream.stanzabase import fix_ns

[docs]class StanzaPath(MatcherBase):

 """
 The StanzaPath matcher selects stanzas that match a given "stanza path",
 which is similar to a normal XPath except that it uses the interfaces and
 plugins of the stanza instead of the actual, underlying XML.

 :param criteria: Object to compare some aspect of a stanza against.
 """

 def __init__(self, criteria):
 self._criteria = fix_ns(criteria, split=True,
 propagate_ns=False,
 default_ns='jabber:client')
 self._raw_criteria = criteria

[docs] def match(self, stanza):
 """
 Compare a stanza against a "stanza path". A stanza path is similar to
 an XPath expression, but uses the stanza's interfaces and plugins
 instead of the underlying XML. See the documentation for the stanza
 :meth:`~sleekxmpp.xmlstream.stanzabase.ElementBase.match()` method
 for more information.

 :param stanza: The :class:`~sleekxmpp.xmlstream.stanzabase.ElementBase`
 stanza to compare against.
 """
 return stanza.match(self._criteria) or stanza.match(self._raw_criteria)

 © Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

static/images/from&yet.png
from &yet

_modules/sleekxmpp/xmlstream/stanzabase.html

 Navigation

 		
 index

 		
 modules |

 		1.0 Documentation »

 		Module code »

 Source code for sleekxmpp.xmlstream.stanzabase

-*- coding: utf-8 -*-
"""
 sleekxmpp.xmlstream.stanzabase
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    This module implements a wrapper layer for XML objects
    that allows them to be treated like dictionaries.

    Part of SleekXMPP: The Sleek XMPP Library

    :copyright: (c) 2011 Nathanael C. Fritz
    :license: MIT, see LICENSE for more details
"""

from __future__ import with_statement, unicode_literals

import copy
import logging
import weakref
from xml.etree import cElementTree as ET

from sleekxmpp.xmlstream import JID
from sleekxmpp.xmlstream.tostring import tostring
from sleekxmpp.thirdparty import OrderedDict


log = logging.getLogger(__name__)


# Used to check if an argument is an XML object.
XML_TYPE = type(ET.Element('xml'))


XML_NS = 'http://www.w3.org/XML/1998/namespace'


[docs]def register_stanza_plugin(stanza, plugin, iterable=False, overrides=False):
    """
    Associate a stanza object as a plugin for another stanza.

    >>> from sleekxmpp.xmlstream import register_stanza_plugin
    >>> register_stanza_plugin(Iq, CustomStanza)

    Plugin stanzas marked as iterable will be included in the list of
    substanzas for the parent, using ``parent['substanzas']``. If the
    attribute ``plugin_multi_attrib`` was defined for the plugin, then
    the substanza set can be filtered to only instances of the plugin
    class. For example, given a plugin class ``Foo`` with
    ``plugin_multi_attrib = 'foos'`` then::

        parent['foos']

    would return a collection of all ``Foo`` substanzas.

    :param class stanza: The class of the parent stanza.
    :param class plugin: The class of the plugin stanza.
    :param bool iterable: Indicates if the plugin stanza should be
                          included in the parent stanza's iterable
                          ``'substanzas'`` interface results.
    :param bool overrides: Indicates if the plugin should be allowed
                           to override the interface handlers for
                           the parent stanza, based on the plugin's
                           ``overrides`` field.

    .. versionadded:: 1.0-Beta1
        Made ``register_stanza_plugin`` the default name. The prior
        ``registerStanzaPlugin`` function name remains as an alias.
    """
    tag = "{%s}%s" % (plugin.namespace, plugin.name)

    # Prevent weird memory reference gotchas by ensuring
    # that the parent stanza class has its own set of
    # plugin info maps and is not using the mappings from
    # an ancestor class (like ElementBase).
    plugin_info = ('plugin_attrib_map', 'plugin_tag_map',
                   'plugin_iterables', 'plugin_overrides')
    for attr in plugin_info:
        info = getattr(stanza, attr)
        setattr(stanza, attr, info.copy())

    stanza.plugin_attrib_map[plugin.plugin_attrib] = plugin
    stanza.plugin_tag_map[tag] = plugin

    if iterable:
        stanza.plugin_iterables.add(plugin)
        if plugin.plugin_multi_attrib:
            multiplugin = multifactory(plugin, plugin.plugin_multi_attrib)
            register_stanza_plugin(stanza, multiplugin)
    if overrides:
        for interface in plugin.overrides:
            stanza.plugin_overrides[interface] = plugin.plugin_attrib


# To maintain backwards compatibility for now, preserve the camel case name.

registerStanzaPlugin = register_stanza_plugin


def multifactory(stanza, plugin_attrib):
    """
    Returns a ElementBase class for handling reoccuring child stanzas
    """

    def plugin_filter(self):
        return lambda x: isinstance(x, self._multistanza)

    def plugin_lang_filter(self, lang):
        return lambda x: isinstance(x, self._multistanza) and \
                         x['lang'] == lang

    class Multi(ElementBase):
        """
        Template class for multifactory
        """
        def setup(self, xml=None):
            self.xml = ET.Element('')

    def get_multi(self, lang=None):
        parent = self.parent()
        if not lang or lang == '*':
            res = filter(plugin_filter(self), parent)
        else:
            res = filter(plugin_filter(self, lang), parent)
        return list(res)

    def set_multi(self, val, lang=None):
        parent = self.parent()
        del_multi = getattr(self, 'del_%s' % plugin_attrib)
        del_multi(lang)
        for sub in val:
            parent.append(sub)

    def del_multi(self, lang=None):
        parent = self.parent()
        if not lang or lang == '*':
            res = filter(plugin_filter(self), parent)
        else:
            res = filter(plugin_filter(self, lang), parent)
        res = list(res)
        if not res:
            del parent.plugins[(plugin_attrib, None)]
            parent.loaded_plugins.remove(plugin_attrib)
            try:
                parent.xml.remove(self.xml)
            except:
                pass
        else:
            for stanza in list(res):
                parent.iterables.remove(stanza)
                parent.xml.remove(stanza.xml)

    Multi.is_extension = True
    Multi.plugin_attrib = plugin_attrib
    Multi._multistanza = stanza
    Multi.interfaces = set([plugin_attrib])
    Multi.lang_interfaces = set([plugin_attrib])
    setattr(Multi, "get_%s" % plugin_attrib, get_multi)
    setattr(Multi, "set_%s" % plugin_attrib, set_multi)
    setattr(Multi, "del_%s" % plugin_attrib, del_multi)
    return Multi


def fix_ns(xpath, split=False, propagate_ns=True, default_ns=''):
    """Apply the stanza's namespace to elements in an XPath expression.

    :param string xpath: The XPath expression to fix with namespaces.
    :param bool split: Indicates if the fixed XPath should be left as a
                       list of element names with namespaces. Defaults to
                       False, which returns a flat string path.
    :param bool propagate_ns: Overrides propagating parent element
                              namespaces to child elements. Useful if
                              you wish to simply split an XPath that has
                              non-specified namespaces, and child and
                              parent namespaces are known not to always
                              match. Defaults to True.
    """
    fixed = []
    # Split the XPath into a series of blocks, where a block
    # is started by an element with a namespace.
    ns_blocks = xpath.split('{')
    for ns_block in ns_blocks:
        if '}' in ns_block:
            # Apply the found namespace to following elements
            # that do not have namespaces.
            namespace = ns_block.split('}')[0]
            elements = ns_block.split('}')[1].split('/')
        else:
            # Apply the stanza's namespace to the following
            # elements since no namespace was provided.
            namespace = default_ns
            elements = ns_block.split('/')

        for element in elements:
            if element:
                # Skip empty entry artifacts from splitting.
                if propagate_ns:
                    tag = '{%s}%s' % (namespace, element)
                else:
                    tag = element
                fixed.append(tag)
    if split:
        return fixed
    return '/'.join(fixed)


[docs]class ElementBase(object):

    """
    The core of SleekXMPP's stanza XML manipulation and handling is provided
    by ElementBase. ElementBase wraps XML cElementTree objects and enables
    access to the XML contents through dictionary syntax, similar in style
    to the Ruby XMPP library Blather's stanza implementation.

    Stanzas are defined by their name, namespace, and interfaces. For
    example, a simplistic Message stanza could be defined as::

        >>> class Message(ElementBase):
        ...     name = "message"
        ...     namespace = "jabber:client"
        ...     interfaces = set(('to', 'from', 'type', 'body'))
        ...     sub_interfaces = set(('body',))

    The resulting Message stanza's contents may be accessed as so::

        >>> message['to'] = "user@example.com"
        >>> message['body'] = "Hi!"
        >>> message['body']
        "Hi!"
        >>> del message['body']
        >>> message['body']
        ""

    The interface values map to either custom access methods, stanza
    XML attributes, or (if the interface is also in sub_interfaces) the
    text contents of a stanza's subelement.

    Custom access methods may be created by adding methods of the
    form "getInterface", "setInterface", or "delInterface", where
    "Interface" is the titlecase version of the interface name.

    Stanzas may be extended through the use of plugins. A plugin
    is simply a stanza that has a plugin_attrib value. For example::

        >>> class MessagePlugin(ElementBase):
        ...     name = "custom_plugin"
        ...     namespace = "custom"
        ...     interfaces = set(('useful_thing', 'custom'))
        ...     plugin_attrib = "custom"

    The plugin stanza class must be associated with its intended
    container stanza by using register_stanza_plugin as so::

        >>> register_stanza_plugin(Message, MessagePlugin)

    The plugin may then be accessed as if it were built-in to the parent
    stanza::

        >>> message['custom']['useful_thing'] = 'foo'

    If a plugin provides an interface that is the same as the plugin's
    plugin_attrib value, then the plugin's interface may be assigned
    directly from the parent stanza, as shown below, but retrieving
    information will require all interfaces to be used, as so::

        >>> # Same as using message['custom']['custom']
        >>> message['custom'] = 'bar'
        >>> # Must use all interfaces
        >>> message['custom']['custom']
        'bar'

    If the plugin sets :attr:`is_extension` to ``True``, then both setting
    and getting an interface value that is the same as the plugin's
    plugin_attrib value will work, as so::

        >>> message['custom'] = 'bar'  # Using is_extension=True
        >>> message['custom']
        'bar'


    :param xml: Initialize the stanza object with an existing XML object.
    :param parent: Optionally specify a parent stanza object will
                   contain this substanza.
    """

    #: The XML tag name of the element, not including any namespace
    #: prefixes. For example, an :class:`ElementBase` object for
    #: ``<message />`` would use ``name = 'message'``.
    name = 'stanza'

    #: The XML namespace for the element. Given ``<foo xmlns="bar" />``,
    #: then ``namespace = "bar"`` should be used. The default namespace
    #: is ``jabber:client`` since this is being used in an XMPP library.
    namespace = 'jabber:client'

    #: For :class:`ElementBase` subclasses which are intended to be used
    #: as plugins, the ``plugin_attrib`` value defines the plugin name.
    #: Plugins may be accessed by using the ``plugin_attrib`` value as
    #: the interface. An example using ``plugin_attrib = 'foo'``::
    #:
    #:     register_stanza_plugin(Message, FooPlugin)
    #:     msg = Message()
    #:     msg['foo']['an_interface_from_the_foo_plugin']
    plugin_attrib = 'plugin'

    #: For :class:`ElementBase` subclasses that are intended to be an
    #: iterable group of items, the ``plugin_multi_attrib`` value defines
    #: an interface for the parent stanza which returns the entire group
    #: of matching substanzas. So the following are equivalent::
    #:
    #:     # Given stanza class Foo, with plugin_multi_attrib = 'foos'
    #:     parent['foos']
    #:     filter(isinstance(item, Foo), parent['substanzas'])
    plugin_multi_attrib = ''

    #: The set of keys that the stanza provides for accessing and
    #: manipulating the underlying XML object. This set may be augmented
    #: with the :attr:`plugin_attrib` value of any registered
    #: stanza plugins.
    interfaces = set(('type', 'to', 'from', 'id', 'payload'))

    #: A subset of :attr:`interfaces` which maps interfaces to direct
    #: subelements of the underlying XML object. Using this set, the text
    #: of these subelements may be set, retrieved, or removed without
    #: needing to define custom methods.
    sub_interfaces = set()

    #: A subset of :attr:`interfaces` which maps the presence of
    #: subelements to boolean values. Using this set allows for quickly
    #: checking for the existence of empty subelements like ``<required />``.
    #:
    #: .. versionadded:: 1.1
    bool_interfaces = set()

    #: .. versionadded:: 1.1.2
    lang_interfaces = set()

    #: In some cases you may wish to override the behaviour of one of the
    #: parent stanza's interfaces. The ``overrides`` list specifies the
    #: interface name and access method to be overridden. For example,
    #: to override setting the parent's ``'condition'`` interface you
    #: would use::
    #:
    #:     overrides = ['set_condition']
    #:
    #: Getting and deleting the ``'condition'`` interface would not
    #: be affected.
    #:
    #: .. versionadded:: 1.0-Beta5
    overrides = []

    #: If you need to add a new interface to an existing stanza, you
    #: can create a plugin and set ``is_extension = True``. Be sure
    #: to set the :attr:`plugin_attrib` value to the desired interface
    #: name, and that it is the only interface listed in
    #: :attr:`interfaces`. Requests for the new interface from the
    #: parent stanza will be passed to the plugin directly.
    #:
    #: .. versionadded:: 1.0-Beta5
    is_extension = False

    #: A map of interface operations to the overriding functions.
    #: For example, after overriding the ``set`` operation for
    #: the interface ``body``, :attr:`plugin_overrides` would be::
    #:
    #:     {'set_body': <some function>}
    #:
    #: .. versionadded: 1.0-Beta5
    plugin_overrides = {}

    #: A mapping of the :attr:`plugin_attrib` values of registered
    #: plugins to their respective classes.
    plugin_attrib_map = {}

    #: A mapping of root element tag names (in ``'{namespace}elementname'``
    #: format) to the plugin classes responsible for them.
    plugin_tag_map = {}

    #: The set of stanza classes that can be iterated over using
    #: the 'substanzas' interface. Classes are added to this set
    #: when registering a plugin with ``iterable=True``::
    #:
    #:     register_stanza_plugin(DiscoInfo, DiscoItem, iterable=True)
    #:
    #: .. versionadded:: 1.0-Beta5
    plugin_iterables = set()

    #: A deprecated version of :attr:`plugin_iterables` that remains
    #: for backward compatibility. It required a parent stanza to
    #: know beforehand what stanza classes would be iterable::
    #:
    #:     class DiscoItem(ElementBase):
    #:         ...
    #:
    #:     class DiscoInfo(ElementBase):
    #:         subitem = (DiscoItem, )
    #:         ...
    #:
    #: .. deprecated:: 1.0-Beta5
    subitem = set()

    #: The default XML namespace: ``http://www.w3.org/XML/1998/namespace``.
    xml_ns = XML_NS

    def __init__(self, xml=None, parent=None):
        self._index = 0

        #: The underlying XML object for the stanza. It is a standard
        #: :class:`xml.etree.cElementTree` object.
        self.xml = xml

        #: An ordered dictionary of plugin stanzas, mapped by their
        #: :attr:`plugin_attrib` value.
        self.plugins = OrderedDict()
        self.loaded_plugins = set()

        #: A list of child stanzas whose class is included in
        #: :attr:`plugin_iterables`.
        self.iterables = []

        #: The name of the tag for the stanza's root element. It is the
        #: same as calling :meth:`tag_name()` and is formatted as
        #: ``'{namespace}elementname'``.
        self.tag = self.tag_name()

        #: A :class:`weakref.weakref` to the parent stanza, if there is one.
        #: If not, then :attr:`parent` is ``None``.
        self.parent = None
        if parent is not None:
            if not isinstance(parent, weakref.ReferenceType):
                self.parent = weakref.ref(parent)
            else:
                self.parent = parent

        if self.subitem is not None:
            for sub in self.subitem:
                self.plugin_iterables.add(sub)

        if self.setup(xml):
            # If we generated our own XML, then everything is ready.
            return

        # Initialize values using provided XML
        for child in self.xml:
            if child.tag in self.plugin_tag_map:
                plugin_class = self.plugin_tag_map[child.tag]
                self.init_plugin(plugin_class.plugin_attrib,
                                 existing_xml=child,
                                 reuse=False)

[docs]    def setup(self, xml=None):
        """Initialize the stanza's XML contents.

        Will return ``True`` if XML was generated according to the stanza's
        definition instead of building a stanza object from an existing
        XML object.

        :param xml: An existing XML object to use for the stanza's content
                    instead of generating new XML.
        """
        if self.xml is None:
            self.xml = xml

        last_xml = self.xml
        if self.xml is None:
            # Generate XML from the stanza definition
            for ename in self.name.split('/'):
                new = ET.Element("{%s}%s" % (self.namespace, ename))
                if self.xml is None:
                    self.xml = new
                else:
                    last_xml.append(new)
                last_xml = new
            if self.parent is not None:
                self.parent().xml.append(self.xml)

            # We had to generate XML
            return True
        else:
            # We did not generate XML
            return False


[docs]    def enable(self, attrib, lang=None):
        """Enable and initialize a stanza plugin.

        Alias for :meth:`init_plugin`.

        :param string attrib: The :attr:`plugin_attrib` value of the
                              plugin to enable.
        """
        return self.init_plugin(attrib, lang)


    def _get_plugin(self, name, lang=None, check=False):
        if lang is None:
            lang = self.get_lang()

        if name not in self.plugin_attrib_map:
            return None

        plugin_class = self.plugin_attrib_map[name]

        if plugin_class.is_extension:
            if (name, None) in self.plugins:
                return self.plugins[(name, None)]
            else:
                return None if check else self.init_plugin(name, lang)
        else:
            if (name, lang) in self.plugins:
                return self.plugins[(name, lang)]
            else:
                return None if check else self.init_plugin(name, lang)

[docs]    def init_plugin(self, attrib, lang=None, existing_xml=None, reuse=True):
        """Enable and initialize a stanza plugin.

        :param string attrib: The :attr:`plugin_attrib` value of the
                              plugin to enable.
        """
        default_lang = self.get_lang()
        if not lang:
            lang = default_lang

        plugin_class = self.plugin_attrib_map[attrib]

        if plugin_class.is_extension and (attrib, None) in self.plugins:
            return self.plugins[(attrib, None)]
        if reuse and (attrib, lang) in self.plugins:
            return self.plugins[(attrib, lang)]

        plugin = plugin_class(parent=self, xml=existing_xml)

        if plugin.is_extension:
            self.plugins[(attrib, None)] = plugin
        else:
            if lang != default_lang:
                plugin['lang'] = lang
            self.plugins[(attrib, lang)] = plugin

        if plugin_class in self.plugin_iterables:
            self.iterables.append(plugin)
            if plugin_class.plugin_multi_attrib:
                self.init_plugin(plugin_class.plugin_multi_attrib)

        self.loaded_plugins.add(attrib)

        return plugin


[docs]    def _get_stanza_values(self):
        """Return A JSON/dictionary version of the XML content
        exposed through the stanza's interfaces::

            >>> msg = Message()
            >>> msg.values
            {'body': '', 'from': , 'mucnick': '', 'mucroom': '',
            'to': , 'type': 'normal', 'id': '', 'subject': ''}

        Likewise, assigning to :attr:`values` will change the XML
        content::

            >>> msg = Message()
            >>> msg.values = {'body': 'Hi!', 'to': 'user@example.com'}
            >>> msg
            '<message to="user@example.com"><body>Hi!</body></message>'

        .. versionadded:: 1.0-Beta1
        """
        values = {}
        values['lang'] = self['lang']
        for interface in self.interfaces:
            values[interface] = self[interface]
            if interface in self.lang_interfaces:
                values['%s|*' % interface] = self['%s|*' % interface]
        for plugin, stanza in self.plugins.items():
            lang = stanza['lang']
            if lang:
                values['%s|%s' % (plugin[0], lang)] = stanza.values
            else:
                values[plugin[0]] = stanza.values
        if self.iterables:
            iterables = []
            for stanza in self.iterables:
                iterables.append(stanza.values)
                iterables[-1]['__childtag__'] = stanza.tag
            values['substanzas'] = iterables
        return values


[docs]    def _set_stanza_values(self, values):
        """Set multiple stanza interface values using a dictionary.

        Stanza plugin values may be set using nested dictionaries.

        :param values: A dictionary mapping stanza interface with values.
                       Plugin interfaces may accept a nested dictionary that
                       will be used recursively.

        .. versionadded:: 1.0-Beta1
        """
        iterable_interfaces = [p.plugin_attrib for \
                                    p in self.plugin_iterables]

        for interface, value in values.items():
            full_interface = interface
            interface_lang = ('%s|' % interface).split('|')
            interface = interface_lang[0]
            lang = interface_lang[1] or self.get_lang()

            if interface == 'substanzas':
                # Remove existing substanzas
                for stanza in self.iterables:
                    self.xml.remove(stanza.xml)
                self.iterables = []

                # Add new substanzas
                for subdict in value:
                    if '__childtag__' in subdict:
                        for subclass in self.plugin_iterables:
                            child_tag = "{%s}%s" % (subclass.namespace,
                                                    subclass.name)
                            if subdict['__childtag__'] == child_tag:
                                sub = subclass(parent=self)
                                sub.values = subdict
                                self.iterables.append(sub)
                                break
            elif interface == 'lang':
                self[interface] = value
            elif interface in self.interfaces:
                self[full_interface] = value
            elif interface in self.plugin_attrib_map:
                if interface not in iterable_interfaces:
                    plugin = self._get_plugin(interface, lang)
                    if plugin:
                        plugin.values = value
        return self


[docs]    def __getitem__(self, attrib):
        """Return the value of a stanza interface using dict-like syntax.

        Example::

            >>> msg['body']
            'Message contents'

        Stanza interfaces are typically mapped directly to the underlying XML
        object, but can be overridden by the presence of a ``get_attrib``
        method (or ``get_foo`` where the interface is named ``'foo'``, etc).

        The search order for interface value retrieval for an interface
        named ``'foo'`` is:

            1. The list of substanzas (``'substanzas'``)
            2. The result of calling the ``get_foo`` override handler.
            3. The result of calling ``get_foo``.
            4. The result of calling ``getFoo``.
            5. The contents of the ``foo`` subelement, if ``foo`` is listed
               in :attr:`sub_interfaces`.
            6. True or False depending on the existence of a ``foo``
               subelement and ``foo`` is in :attr:`bool_interfaces`.
            7. The value of the ``foo`` attribute of the XML object.
            8. The plugin named ``'foo'``
            9. An empty string.

        :param string attrib: The name of the requested stanza interface.
        """
        full_attrib = attrib
        attrib_lang = ('%s|' % attrib).split('|')
        attrib = attrib_lang[0]
        lang = attrib_lang[1] or None

        kwargs = {}
        if lang and attrib in self.lang_interfaces:
            kwargs['lang'] = lang

        if attrib == 'substanzas':
            return self.iterables
        elif attrib in self.interfaces or attrib == 'lang':
            get_method = "get_%s" % attrib.lower()
            get_method2 = "get%s" % attrib.title()

            if self.plugin_overrides:
                name = self.plugin_overrides.get(get_method, None)
                if name:
                    plugin = self._get_plugin(name, lang)
                    if plugin:
                        handler = getattr(plugin, get_method, None)
                        if handler:
                            return handler(**kwargs)

            if hasattr(self, get_method):
                return getattr(self, get_method)(**kwargs)
            elif hasattr(self, get_method2):
                return getattr(self, get_method2)(**kwargs)
            else:
                if attrib in self.sub_interfaces:
                    return self._get_sub_text(attrib, lang=lang)
                elif attrib in self.bool_interfaces:
                    elem = self.xml.find('{%s}%s' % (self.namespace, attrib))
                    return elem is not None
                else:
                    return self._get_attr(attrib)
        elif attrib in self.plugin_attrib_map:
            plugin = self._get_plugin(attrib, lang)
            if plugin and plugin.is_extension:
                return plugin[full_attrib]
            return plugin
        else:
            return ''


[docs]    def __setitem__(self, attrib, value):
        """Set the value of a stanza interface using dictionary-like syntax.

        Example::

            >>> msg['body'] = "Hi!"
            >>> msg['body']
            'Hi!'

        Stanza interfaces are typically mapped directly to the underlying XML
        object, but can be overridden by the presence of a ``set_attrib``
        method (or ``set_foo`` where the interface is named ``'foo'``, etc).

        The effect of interface value assignment for an interface
        named ``'foo'`` will be one of:

            1. Delete the interface's contents if the value is None.
            2. Call the ``set_foo`` override handler, if it exists.
            3. Call ``set_foo``, if it exists.
            4. Call ``setFoo``, if it exists.
            5. Set the text of a ``foo`` element, if ``'foo'`` is
               in :attr:`sub_interfaces`.
            6. Add or remove an empty subelement ``foo``
               if ``foo`` is in :attr:`bool_interfaces`.
            7. Set the value of a top level XML attribute named ``foo``.
            8. Attempt to pass the value to a plugin named ``'foo'`` using
               the plugin's ``'foo'`` interface.
            9. Do nothing.

        :param string attrib: The name of the stanza interface to modify.
        :param value: The new value of the stanza interface.
        """
        full_attrib = attrib
        attrib_lang = ('%s|' % attrib).split('|')
        attrib = attrib_lang[0]
        lang = attrib_lang[1] or None

        kwargs = {}
        if lang and attrib in self.lang_interfaces:
            kwargs['lang'] = lang

        if attrib in self.interfaces or attrib == 'lang':
            if value is not None:
                set_method = "set_%s" % attrib.lower()
                set_method2 = "set%s" % attrib.title()

                if self.plugin_overrides:
                    name = self.plugin_overrides.get(set_method, None)
                    if name:
                        plugin = self._get_plugin(name, lang)
                        if plugin:
                            handler = getattr(plugin, set_method, None)
                            if handler:
                                return handler(value, **kwargs)

                if hasattr(self, set_method):
                    getattr(self, set_method)(value, **kwargs)
                elif hasattr(self, set_method2):
                    getattr(self, set_method2)(value, **kwargs)
                else:
                    if attrib in self.sub_interfaces:
                        if lang == '*':
                            return self._set_all_sub_text(attrib,
                                                          value,
                                                          lang='*')
                        return self._set_sub_text(attrib, text=value,
                                                          lang=lang)
                    elif attrib in self.bool_interfaces:
                        if value:
                            return self._set_sub_text(attrib, '',
                                    keep=True,
                                    lang=lang)
                        else:
                            return self._set_sub_text(attrib, '',
                                    keep=False,
                                    lang=lang)
                    else:
                        self._set_attr(attrib, value)
            else:
                self.__delitem__(attrib)
        elif attrib in self.plugin_attrib_map:
            plugin = self._get_plugin(attrib, lang)
            if plugin:
                plugin[full_attrib] = value
        return self


[docs]    def __delitem__(self, attrib):
        """Delete the value of a stanza interface using dict-like syntax.

        Example::

            >>> msg['body'] = "Hi!"
            >>> msg['body']
            'Hi!'
            >>> del msg['body']
            >>> msg['body']
            ''

        Stanza interfaces are typically mapped directly to the underlyig XML
        object, but can be overridden by the presence of a ``del_attrib``
        method (or ``del_foo`` where the interface is named ``'foo'``, etc).

        The effect of deleting a stanza interface value named ``foo`` will be
        one of:

            1. Call ``del_foo`` override handler, if it exists.
            2. Call ``del_foo``, if it exists.
            3. Call ``delFoo``, if it exists.
            4. Delete ``foo`` element, if ``'foo'`` is in
               :attr:`sub_interfaces`.
            5. Remove ``foo`` element if ``'foo'`` is in
               :attr:`bool_interfaces`.
            6. Delete top level XML attribute named ``foo``.
            7. Remove the ``foo`` plugin, if it was loaded.
            8. Do nothing.

        :param attrib: The name of the affected stanza interface.
        """
        full_attrib = attrib
        attrib_lang = ('%s|' % attrib).split('|')
        attrib = attrib_lang[0]
        lang = attrib_lang[1] or None

        kwargs = {}
        if lang and attrib in self.lang_interfaces:
            kwargs['lang'] = lang

        if attrib in self.interfaces or attrib == 'lang':
            del_method = "del_%s" % attrib.lower()
            del_method2 = "del%s" % attrib.title()

            if self.plugin_overrides:
                name = self.plugin_overrides.get(del_method, None)
                if name:
                    plugin = self._get_plugin(attrib, lang)
                    if plugin:
                        handler = getattr(plugin, del_method, None)
                        if handler:
                            return handler(**kwargs)

            if hasattr(self, del_method):
                getattr(self, del_method)(**kwargs)
            elif hasattr(self, del_method2):
                getattr(self, del_method2)(**kwargs)
            else:
                if attrib in self.sub_interfaces:
                    return self._del_sub(attrib, lang=lang)
                elif attrib in self.bool_interfaces:
                    return self._del_sub(attrib, lang=lang)
                else:
                    self._del_attr(attrib)
        elif attrib in self.plugin_attrib_map:
            plugin = self._get_plugin(attrib, lang, check=True)
            if not plugin:
                return self
            if plugin.is_extension:
                del plugin[full_attrib]
                del self.plugins[(attrib, None)]
            else:
                del self.plugins[(attrib, plugin['lang'])]
            self.loaded_plugins.remove(attrib)
            try:
                self.xml.remove(plugin.xml)
            except:
                pass
        return self


[docs]    def _set_attr(self, name, value):
        """Set the value of a top level attribute of the XML object.

        If the new value is None or an empty string, then the attribute will
        be removed.

        :param name: The name of the attribute.
        :param value: The new value of the attribute, or None or '' to
                      remove it.
        """
        if value is None or value == '':
            self.__delitem__(name)
        else:
            self.xml.attrib[name] = value


[docs]    def _del_attr(self, name):
        """Remove a top level attribute of the XML object.

        :param name: The name of the attribute.
        """
        if name in self.xml.attrib:
            del self.xml.attrib[name]


[docs]    def _get_attr(self, name, default=''):
        """Return the value of a top level attribute of the XML object.

        In case the attribute has not been set, a default value can be
        returned instead. An empty string is returned if no other default
        is supplied.

        :param name: The name of the attribute.
        :param default: Optional value to return if the attribute has not
                        been set. An empty string is returned otherwise.
        """
        return self.xml.attrib.get(name, default)


[docs]    def _get_sub_text(self, name, default='', lang=None):
        """Return the text contents of a sub element.

        In case the element does not exist, or it has no textual content,
        a default value can be returned instead. An empty string is returned
        if no other default is supplied.

        :param name: The name or XPath expression of the element.
        :param default: Optional default to return if the element does
                        not exists. An empty string is returned otherwise.
        """
        name = self._fix_ns(name)
        if lang == '*':
            return self._get_all_sub_text(name, default, None)

        default_lang = self.get_lang()
        if not lang:
            lang = default_lang

        stanzas = self.xml.findall(name)
        if not stanzas:
            return default
        for stanza in stanzas:
            if stanza.attrib.get('{%s}lang' % XML_NS, default_lang) == lang:
                if stanza.text is None:
                    return default
                return stanza.text
        return default


    def _get_all_sub_text(self, name, default='', lang=None):
        name = self._fix_ns(name)

        default_lang = self.get_lang()
        results = OrderedDict()
        stanzas = self.xml.findall(name)
        if stanzas:
            for stanza in stanzas:
                stanza_lang = stanza.attrib.get('{%s}lang' % XML_NS,
                                                default_lang)
                if not lang or lang == '*' or stanza_lang == lang:
                    results[stanza_lang] = stanza.text
        return results

[docs]    def _set_sub_text(self, name, text=None, keep=False, lang=None):
        """Set the text contents of a sub element.

        In case the element does not exist, a element will be created,
        and its text contents will be set.

        If the text is set to an empty string, or None, then the
        element will be removed, unless keep is set to True.

        :param name: The name or XPath expression of the element.
        :param text: The new textual content of the element. If the text
                     is an empty string or None, the element will be removed
                     unless the parameter keep is True.
        :param keep: Indicates if the element should be kept if its text is
                     removed. Defaults to False.
        """
        default_lang = self.get_lang()
        if lang is None:
            lang = default_lang

        if not text and not keep:
            return self._del_sub(name, lang=lang)

        path = self._fix_ns(name, split=True)
        name = path[-1]
        parent = self.xml

        # The first goal is to find the parent of the subelement, or, if
        # we can't find that, the closest grandparent element.
        missing_path = []
        search_order = path[:-1]
        while search_order:
            parent = self.xml.find('/'.join(search_order))
            ename = search_order.pop()
            if parent is not None:
                break
            else:
                missing_path.append(ename)
        missing_path.reverse()

        # Find all existing elements that match the desired
        # element path (there may be multiples due to different
        # languages values).
        if parent is not None:
            elements = self.xml.findall('/'.join(path))
        else:
            parent = self.xml
            elements = []

        # Insert the remaining grandparent elements that don't exist yet.
        for ename in missing_path:
            element = ET.Element(ename)
            parent.append(element)
            parent = element

        # Re-use an existing element with the proper language, if one exists.
        for element in elements:
            elang = element.attrib.get('{%s}lang' % XML_NS, default_lang)
            if not lang and elang == default_lang or lang and lang == elang:
                element.text = text
                return element

        # No useable element exists, so create a new one.
        element = ET.Element(name)
        element.text = text
        if lang and lang != default_lang:
            element.attrib['{%s}lang' % XML_NS] = lang
        parent.append(element)
        return element


    def _set_all_sub_text(self, name, values, keep=False, lang=None):
        self._del_sub(name, lang)
        for value_lang, value in values.items():
            if not lang or lang == '*' or value_lang == lang:
                self._set_sub_text(name, text=value,
                                         keep=keep,
                                         lang=value_lang)

[docs]    def _del_sub(self, name, all=False, lang=None):
        """Remove sub elements that match the given name or XPath.

        If the element is in a path, then any parent elements that become
        empty after deleting the element may also be deleted if requested
        by setting all=True.

        :param name: The name or XPath expression for the element(s) to remove.
        :param bool all: If True, remove all empty elements in the path to the
                         deleted element. Defaults to False.
        """
        path = self._fix_ns(name, split=True)
        original_target = path[-1]

        default_lang = self.get_lang()
        if not lang:
            lang = default_lang

        for level, _ in enumerate(path):
            # Generate the paths to the target elements and their parent.
            element_path = "/".join(path[:len(path) - level])
            parent_path = "/".join(path[:len(path) - level - 1])

            elements = self.xml.findall(element_path)
            parent = self.xml.find(parent_path)

            if elements:
                if parent is None:
                    parent = self.xml
                for element in elements:
                    if element.tag == original_target or not list(element):
                        # Only delete the originally requested elements, and
                        # any parent elements that have become empty.
                        elem_lang = element.attrib.get('{%s}lang' % XML_NS,
                                                       default_lang)
                        if lang == '*' or elem_lang == lang:
                            parent.remove(element)
            if not all:
                # If we don't want to delete elements up the tree, stop
                # after deleting the first level of elements.
                return


[docs]    def match(self, xpath):
        """Compare a stanza object with an XPath-like expression.

        If the XPath matches the contents of the stanza object, the match
        is successful.

        The XPath expression may include checks for stanza attributes.
        For example::

            'presence@show=xa@priority=2/status'

        Would match a presence stanza whose show value is set to ``'xa'``,
        has a priority value of ``'2'``, and has a status element.

        :param string xpath: The XPath expression to check against. It
                             may be either a string or a list of element
                             names with attribute checks.
        """
        if not isinstance(xpath, list):
            xpath = self._fix_ns(xpath, split=True, propagate_ns=False)

        # Extract the tag name and attribute checks for the first XPath node.
        components = xpath[0].split('@')
        tag = components[0]
        attributes = components[1:]

        if tag not in (self.name, "{%s}%s" % (self.namespace, self.name)) and \
            tag not in self.loaded_plugins and tag not in self.plugin_attrib:
            # The requested tag is not in this stanza, so no match.
            return False

        # Check the rest of the XPath against any substanzas.
        matched_substanzas = False
        for substanza in self.iterables:
            if xpath[1:] == []:
                break
            matched_substanzas = substanza.match(xpath[1:])
            if matched_substanzas:
                break

        # Check attribute values.
        for attribute in attributes:
            name, value = attribute.split('=')
            if self[name] != value:
                return False

        # Check sub interfaces.
        if len(xpath) > 1:
            next_tag = xpath[1]
            if next_tag in self.sub_interfaces and self[next_tag]:
                return True

        # Attempt to continue matching the XPath using the stanza's plugins.
        if not matched_substanzas and len(xpath) > 1:
            # Convert {namespace}tag@attribs to just tag
            next_tag = xpath[1].split('@')[0].split('}')[-1]
            langs = [name[1] for name in self.plugins if name[0] == next_tag]
            for lang in langs:
                plugin = self._get_plugin(next_tag, lang)
                if plugin and plugin.match(xpath[1:]):
                    return True
            return False

        # Everything matched.
        return True


[docs]    def find(self, xpath):
        """Find an XML object in this stanza given an XPath expression.

        Exposes ElementTree interface for backwards compatibility.

        .. note::

            Matching on attribute values is not supported in Python 2.6
            or Python 3.1

        :param string xpath: An XPath expression matching a single
                             desired element.
        """
        return self.xml.find(xpath)


[docs]    def findall(self, xpath):
        """Find multiple XML objects in this stanza given an XPath expression.

        Exposes ElementTree interface for backwards compatibility.

        .. note::

            Matching on attribute values is not supported in Python 2.6
            or Python 3.1.

        :param string xpath: An XPath expression matching multiple
                             desired elements.
        """
        return self.xml.findall(xpath)


[docs]    def get(self, key, default=None):
        """Return the value of a stanza interface.

        If the found value is None or an empty string, return the supplied
        default value.

        Allows stanza objects to be used like dictionaries.

        :param string key: The name of the stanza interface to check.
        :param default: Value to return if the stanza interface has a value
                        of ``None`` or ``""``. Will default to returning None.
        """
        value = self[key]
        if value is None or value == '':
            return default
        return value


[docs]    def keys(self):
        """Return the names of all stanza interfaces provided by the
        stanza object.

        Allows stanza objects to be used like dictionaries.
        """
        out = []
        out += [x for x in self.interfaces]
        out += [x for x in self.loaded_plugins]
        out.append('lang')
        if self.iterables:
            out.append('substanzas')
        return out


[docs]    def append(self, item):
        """Append either an XML object or a substanza to this stanza object.

        If a substanza object is appended, it will be added to the list
        of iterable stanzas.

        Allows stanza objects to be used like lists.

        :param item: Either an XML object or a stanza object to add to
                     this stanza's contents.
        """
        if not isinstance(item, ElementBase):
            if type(item) == XML_TYPE:
                return self.appendxml(item)
            else:
                raise TypeError
        self.xml.append(item.xml)
        self.iterables.append(item)
        if item.__class__ in self.plugin_iterables:
            if item.__class__.plugin_multi_attrib:
                self.init_plugin(item.__class__.plugin_multi_attrib)
        elif item.__class__ == self.plugin_tag_map.get(item.tag_name(), None):
            self.init_plugin(item.plugin_attrib,
                             existing_xml=item.xml,
                             reuse=False)
        return self


[docs]    def appendxml(self, xml):
        """Append an XML object to the stanza's XML.

        The added XML will not be included in the list of
        iterable substanzas.

        :param XML xml: The XML object to add to the stanza.
        """
        self.xml.append(xml)
        return self


[docs]    def pop(self, index=0):
        """Remove and return the last substanza in the list of
        iterable substanzas.

        Allows stanza objects to be used like lists.

        :param int index: The index of the substanza to remove.
        """
        substanza = self.iterables.pop(index)
        self.xml.remove(substanza.xml)
        return substanza


[docs]    def next(self):
        """Return the next iterable substanza."""
        return self.__next__()


[docs]    def clear(self):
        """Remove all XML element contents and plugins.

        Any attribute values will be preserved.
        """
        for child in list(self.xml):
            self.xml.remove(child)

        for plugin in list(self.plugins.keys()):
            del self.plugins[plugin]
        return self


    @classmethod
[docs]    def tag_name(cls):
        """Return the namespaced name of the stanza's root element.

        The format for the tag name is::

            '{namespace}elementname'

        For example, for the stanza ``<foo xmlns="bar" />``,
        ``stanza.tag_name()`` would return ``"{bar}foo"``.
        """
        return "{%s}%s" % (cls.namespace, cls.name)


    def get_lang(self, lang=None):
        result = self.xml.attrib.get('{%s}lang' % XML_NS, '')
        if not result and self.parent and self.parent():
            return self.parent()['lang']
        return result

    def set_lang(self, lang):
        self.del_lang()
        attr = '{%s}lang' % XML_NS
        if lang:
            self.xml.attrib[attr] = lang

    def del_lang(self):
        attr = '{%s}lang' % XML_NS
        if attr in self.xml.attrib:
            del self.xml.attrib[attr]

    @property
[docs]    def attrib(self):
        """Return the stanza object itself.

        Older implementations of stanza objects used XML objects directly,
        requiring the use of ``.attrib`` to access attribute values.

        Use of the dictionary syntax with the stanza object itself for
        accessing stanza interfaces is preferred.

        .. deprecated:: 1.0
        """
        return self


    def _fix_ns(self, xpath, split=False, propagate_ns=True):
        return fix_ns(xpath, split=split,
                             propagate_ns=propagate_ns,
                             default_ns=self.namespace)

[docs]    def __eq__(self, other):
        """Compare the stanza object with another to test for equality.

        Stanzas are equal if their interfaces return the same values,
        and if they are both instances of ElementBase.

        :param ElementBase other: The stanza object to compare against.
        """
        if not isinstance(other, ElementBase):
            return False

        # Check that this stanza is a superset of the other stanza.
        values = self.values
        for key in other.keys():
            if key not in values or values[key] != other[key]:
                return False

        # Check that the other stanza is a superset of this stanza.
        values = other.values
        for key in self.keys():
            if key not in values or values[key] != self[key]:
                return False

        # Both stanzas are supersets of each other, therefore they
        # must be equal.
        return True


[docs]    def __ne__(self, other):
        """Compare the stanza object with another to test for inequality.

        Stanzas are not equal if their interfaces return different values,
        or if they are not both instances of ElementBase.

        :param ElementBase other: The stanza object to compare against.
        """
        return not self.__eq__(other)


[docs]    def __bool__(self):
        """Stanza objects should be treated as True in boolean contexts.

        Python 3.x version.
        """
        return True


[docs]    def __nonzero__(self):
        """Stanza objects should be treated as True in boolean contexts.

        Python 2.x version.
        """
        return True


[docs]    def __len__(self):
        """Return the number of iterable substanzas in this stanza."""
        return len(self.iterables)


[docs]    def __iter__(self):
        """Return an iterator object for the stanza's substanzas.

        The iterator is the stanza object itself. Attempting to use two
        iterators on the same stanza at the same time is discouraged.
        """
        self._index = 0
        return self


[docs]    def __next__(self):
        """Return the next iterable substanza."""
        self._index += 1
        if self._index > len(self.iterables):
            self._index = 0
            raise StopIteration
        return self.iterables[self._index - 1]


[docs]    def __copy__(self):
        """Return a copy of the stanza object that does not share the same
        underlying XML object.
        """
        return self.__class__(xml=copy.deepcopy(self.xml), parent=self.parent)


[docs]    def __str__(self, top_level_ns=True):
        """Return a string serialization of the underlying XML object.

        .. seealso:: :ref:`tostring`

        :param bool top_level_ns: Display the top-most namespace.
                                  Defaults to True.
        """
        return tostring(self.xml, xmlns='',
                        top_level=True)


[docs]    def __repr__(self):
        """Use the stanza's serialized XML as its representation."""
        return self.__str__()




[docs]class StanzaBase(ElementBase):

    """
    StanzaBase provides the foundation for all other stanza objects used
    by SleekXMPP, and defines a basic set of interfaces common to nearly
    all stanzas. These interfaces are the ``'id'``, ``'type'``, ``'to'``,
    and ``'from'`` attributes. An additional interface, ``'payload'``, is
    available to access the XML contents of the stanza. Most stanza objects
    will provided more specific interfaces, however.

    **Stanza Interfaces:**

        :id: An optional id value that can be used to associate stanzas
        :to: A JID object representing the recipient's JID.
        :from: A JID object representing the sender's JID.
               with their replies.
        :type: The type of stanza, typically will be ``'normal'``,
               ``'error'``, ``'get'``, or ``'set'``, etc.
        :payload: The XML contents of the stanza.

    :param XMLStream stream: Optional :class:`sleekxmpp.xmlstream.XMLStream`
                             object responsible for sending this stanza.
    :param XML xml: Optional XML contents to initialize stanza values.
    :param string stype: Optional stanza type value.
    :param sto: Optional string or :class:`sleekxmpp.xmlstream.JID`
                object of the recipient's JID.
    :param sfrom: Optional string or :class:`sleekxmpp.xmlstream.JID`
                  object of the sender's JID.
    :param string sid: Optional ID value for the stanza.
    :param parent: Optionally specify a parent stanza object will
                   contain this substanza.
    """

    #: The default XMPP client namespace
    namespace = 'jabber:client'

    #: There is a small set of attributes which apply to all XMPP stanzas:
    #: the stanza type, the to and from JIDs, the stanza ID, and, especially
    #: in the case of an Iq stanza, a payload.
    interfaces = set(('type', 'to', 'from', 'id', 'payload'))

    #: A basic set of allowed values for the ``'type'`` interface.
    types = set(('get', 'set', 'error', None, 'unavailable', 'normal', 'chat'))

    def __init__(self, stream=None, xml=None, stype=None,
                 sto=None, sfrom=None, sid=None, parent=None):
        self.stream = stream
        if stream is not None:
            self.namespace = stream.default_ns
        ElementBase.__init__(self, xml, parent)
        if stype is not None:
            self['type'] = stype
        if sto is not None:
            self['to'] = sto
        if sfrom is not None:
            self['from'] = sfrom
        if sid is not None:
            self['id'] = sid
        self.tag = "{%s}%s" % (self.namespace, self.name)

[docs]    def set_type(self, value):
        """Set the stanza's ``'type'`` attribute.

        Only type values contained in :attr:`types` are accepted.

        :param string value: One of the values contained in :attr:`types`
        """
        if value in self.types:
            self.xml.attrib['type'] = value
        return self


[docs]    def get_to(self):
        """Return the value of the stanza's ``'to'`` attribute."""
        return JID(self._get_attr('to'))


[docs]    def set_to(self, value):
        """Set the ``'to'`` attribute of the stanza.

        :param value: A string or :class:`sleekxmpp.xmlstream.JID` object
               representing the recipient's JID.
        """
        return self._set_attr('to', str(value))


[docs]    def get_from(self):
        """Return the value of the stanza's ``'from'`` attribute."""
        return JID(self._get_attr('from'))


[docs]    def set_from(self, value):
        """Set the 'from' attribute of the stanza.

        Arguments:
            from -- A string or JID object representing the sender's JID.
        """
        return self._set_attr('from', str(value))


[docs]    def get_payload(self):
        """Return a list of XML objects contained in the stanza."""
        return list(self.xml)


[docs]    def set_payload(self, value):
        """Add XML content to the stanza.

        :param value: Either an XML or a stanza object, or a list
                      of XML or stanza objects.
        """
        if not isinstance(value, list):
            value = [value]
        for val in value:
            self.append(val)
        return self


[docs]    def del_payload(self):
        """Remove the XML contents of the stanza."""
        self.clear()
        return self


[docs]    def reply(self, clear=True):
        """Prepare the stanza for sending a reply.

        Swaps the ``'from'`` and ``'to'`` attributes.

        If ``clear=True``, then also remove the stanza's
        contents to make room for the reply content.

        For client streams, the ``'from'`` attribute is removed.

        :param bool clear: Indicates if the stanza's contents should be
                           removed. Defaults to ``True``.
        """
        # if it's a component, use from
        if self.stream and hasattr(self.stream, "is_component") and \
            self.stream.is_component:
            self['from'], self['to'] = self['to'], self['from']
        else:
            self['to'] = self['from']
            del self['from']
        if clear:
            self.clear()
        return self


[docs]    def error(self):
        """Set the stanza's type to ``'error'``."""
        self['type'] = 'error'
        return self


[docs]    def unhandled(self):
        """Called if no handlers have been registered to process this stanza.

        Meant to be overridden.
        """
        pass


[docs]    def exception(self, e):
        """Handle exceptions raised during stanza processing.

        Meant to be overridden.
        """
        log.exception('Error handling {%s}%s stanza', self.namespace,
                                                      self.name)


[docs]    def send(self, now=False):
        """Queue the stanza to be sent on the XML stream.

        :param bool now: Indicates if the queue should be skipped and the
                         stanza sent immediately. Useful for stream
                         initialization. Defaults to ``False``.
        """
        self.stream.send(self, now=now)


    def __copy__(self):
        """Return a copy of the stanza object that does not share the
        same underlying XML object, but does share the same XML stream.
        """
        return self.__class__(xml=copy.deepcopy(self.xml),
                              stream=self.stream)

    def __str__(self, top_level_ns=False):
        """Serialize the stanza's XML to a string.

        :param bool top_level_ns: Display the top-most namespace.
                                  Defaults to ``False``.
        """
        xmlns = self.stream.default_ns if self.stream else ''
        return tostring(self.xml, xmlns=xmlns,
                        stream=self.stream,
                        top_level=(self.stream is None))


#: A JSON/dictionary version of the XML content exposed through
#: the stanza interfaces::
#:
#:     >>> msg = Message()
#:     >>> msg.values
#:    {'body': '', 'from': , 'mucnick': '', 'mucroom': '',
#:     'to': , 'type': 'normal', 'id': '', 'subject': ''}
#:
#: Likewise, assigning to the :attr:`values` will change the XML
#: content::
#:
#:     >>> msg = Message()
#:     >>> msg.values = {'body': 'Hi!', 'to': 'user@example.com'}
#:     >>> msg
#:     '<message to="user@example.com"><body>Hi!</body></message>'
#:
#: Child stanzas are exposed as nested dictionaries.

ElementBase.values = property(ElementBase._get_stanza_values,
                              ElementBase._set_stanza_values)


# To comply with PEP8, method names now use underscores.
# Deprecated method names are re-mapped for backwards compatibility.
ElementBase.initPlugin = ElementBase.init_plugin
ElementBase._getAttr = ElementBase._get_attr
ElementBase._setAttr = ElementBase._set_attr
ElementBase._delAttr = ElementBase._del_attr
ElementBase._getSubText = ElementBase._get_sub_text
ElementBase._setSubText = ElementBase._set_sub_text
ElementBase._delSub = ElementBase._del_sub
ElementBase.getStanzaValues = ElementBase._get_stanza_values
ElementBase.setStanzaValues = ElementBase._set_stanza_values

StanzaBase.setType = StanzaBase.set_type
StanzaBase.getTo = StanzaBase.get_to
StanzaBase.setTo = StanzaBase.set_to
StanzaBase.getFrom = StanzaBase.get_from
StanzaBase.setFrom = StanzaBase.set_from
StanzaBase.getPayload = StanzaBase.get_payload
StanzaBase.setPayload = StanzaBase.set_payload
StanzaBase.delPayload = StanzaBase.del_payload





          

      

      

    


    
        © Copyright 2011, Nathan Fritz, Lance Stout.
      Created using Sphinx 1.1.3.
    

 












  
     Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_modules/sleekxmpp/xmlstream/filesocket.html

    
      Navigation


      
        		
          index


        		
          modules |


        		1.0 Documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for sleekxmpp.xmlstream.filesocket

# -*- coding: utf-8 -*-
"""
    sleekxmpp.xmlstream.filesocket
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 This module is a shim for correcting deficiencies in the file
 socket implementation of Python2.6.

 Part of SleekXMPP: The Sleek XMPP Library

 :copyright: (c) 2011 Nathanael C. Fritz
 :license: MIT, see LICENSE for more details
"""

from socket import _fileobject
import socket

[docs]class FileSocket(_fileobject):

 """Create a file object wrapper for a socket to work around
 issues present in Python 2.6 when using sockets as file objects.

 The parser for :class:`~xml.etree.cElementTree` requires a file, but
 we will be reading from the XMPP connection socket instead.
 """

[docs] def read(self, size=4096):
 """Read data from the socket as if it were a file."""
 if self._sock is None:
 return None
 data = self._sock.recv(size)
 if data is not None:
 return data

[docs]class Socket26(socket.socket):

 """A custom socket implementation that uses our own FileSocket class
 to work around issues in Python 2.6 when using sockets as files.
 """

[docs] def makefile(self, mode='r', bufsize=-1):
 """makefile([mode[, bufsize]]) -> file object
 Return a regular file object corresponding to the socket. The mode
 and bufsize arguments are as for the built-in open() function."""
 return FileSocket(self._sock, mode, bufsize)

 © Copyright 2011, Nathan Fritz, Lance Stout.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/header.png

_static/images/arch_layers.png
XEP Plugins

ClientXMPP
ComponentXMPP
Stanza
Objects
BaseXMPP
XMLStream

